RandomWOW/src/LightProgramGenerator.cpp

881 lines
30 KiB
C++
Raw Normal View History

2019-03-28 14:27:10 +00:00
/*
Copyright (c) 2019 tevador
This file is part of RandomX.
RandomX is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RandomX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RandomX. If not, see<http://www.gnu.org/licenses/>.
*/
#include <stddef.h>
2019-03-28 14:27:10 +00:00
#include "blake2/blake2.h"
#include "configuration.h"
#include "Program.hpp"
#include "blake2/endian.h"
2019-03-28 14:27:10 +00:00
#include <iostream>
2019-03-31 11:32:16 +00:00
#include <vector>
2019-03-31 19:22:36 +00:00
#include <algorithm>
#include <stdexcept>
2019-03-31 22:38:17 +00:00
#include <iomanip>
#include "LightProgramGenerator.hpp"
2019-03-28 14:27:10 +00:00
namespace RandomX {
static bool isMul(int type) {
return type == LightInstructionType::IMUL_R || type == LightInstructionType::IMULH_R || type == LightInstructionType::ISMULH_R || type == LightInstructionType::IMUL_RCP;
2019-04-03 07:53:25 +00:00
}
2019-03-31 11:32:16 +00:00
namespace ExecutionPort {
using type = int;
constexpr type Null = 0;
constexpr type P0 = 1;
constexpr type P1 = 2;
2019-03-31 19:22:36 +00:00
constexpr type P5 = 3;
constexpr type P01 = 4;
constexpr type P05 = 5;
constexpr type P015 = 6;
2019-03-31 11:32:16 +00:00
}
Blake2Generator::Blake2Generator(const void* seed, int nonce) : dataIndex(sizeof(data)) {
memset(data, 0, sizeof(data));
memcpy(data, seed, SeedSize);
store32(&data[60], nonce);
}
2019-03-31 11:32:16 +00:00
uint8_t Blake2Generator::getByte() {
checkData(1);
return data[dataIndex++];
}
2019-03-31 11:32:16 +00:00
uint32_t Blake2Generator::getInt32() {
checkData(4);
auto ret = load32(&data[dataIndex]);
dataIndex += 4;
return ret;
}
2019-03-31 11:32:16 +00:00
void Blake2Generator::checkData(const size_t bytesNeeded) {
if (dataIndex + bytesNeeded > sizeof(data)) {
blake2b(data, sizeof(data), data, sizeof(data), nullptr, 0);
dataIndex = 0;
2019-03-31 11:32:16 +00:00
}
}
2019-03-31 11:32:16 +00:00
2019-03-31 19:22:36 +00:00
class RegisterInfo {
public:
RegisterInfo() : latency(0), lastOpGroup(-1), lastOpPar(-1), value(0) {}
2019-03-31 22:38:17 +00:00
int latency;
2019-03-31 19:22:36 +00:00
int lastOpGroup;
int lastOpPar;
2019-03-31 19:22:36 +00:00
int value;
};
2019-03-31 11:32:16 +00:00
class MacroOp {
public:
MacroOp(const char* name, int size)
: name_(name), size_(size), latency_(0), uop1_(ExecutionPort::Null), uop2_(ExecutionPort::Null) {}
MacroOp(const char* name, int size, int latency, ExecutionPort::type uop)
: name_(name), size_(size), latency_(latency), uop1_(uop), uop2_(ExecutionPort::Null) {}
MacroOp(const char* name, int size, int latency, ExecutionPort::type uop1, ExecutionPort::type uop2)
: name_(name), size_(size), latency_(latency), uop1_(uop1), uop2_(uop2) {}
2019-03-31 19:22:36 +00:00
MacroOp(const MacroOp& parent, bool dependent)
: name_(parent.name_), size_(parent.size_), latency_(parent.latency_), uop1_(parent.uop1_), uop2_(parent.uop2_), dependent_(dependent) {}
2019-03-31 11:32:16 +00:00
const char* getName() const {
return name_;
}
int getSize() const {
return size_;
}
int getLatency() const {
return latency_;
}
ExecutionPort::type getUop1() const {
return uop1_;
}
ExecutionPort::type getUop2() const {
return uop2_;
}
bool isSimple() const {
return uop2_ == ExecutionPort::Null;
}
bool isEliminated() const {
return uop1_ == ExecutionPort::Null;
}
2019-03-31 19:22:36 +00:00
bool isDependent() const {
return dependent_;
}
2019-03-31 11:32:16 +00:00
static const MacroOp Add_rr;
static const MacroOp Add_ri;
static const MacroOp Lea_sib;
static const MacroOp Sub_rr;
static const MacroOp Imul_rr;
static const MacroOp Imul_r;
static const MacroOp Mul_r;
static const MacroOp Mov_rr;
static const MacroOp Mov_ri64;
static const MacroOp Xor_rr;
static const MacroOp Xor_ri;
static const MacroOp Ror_rcl;
static const MacroOp Ror_ri;
static const MacroOp TestJz_fused;
2019-03-31 11:32:16 +00:00
static const MacroOp Xor_self;
static const MacroOp Cmp_ri;
static const MacroOp Setcc_r;
private:
const char* name_;
int size_;
int latency_;
ExecutionPort::type uop1_;
ExecutionPort::type uop2_;
2019-03-31 19:22:36 +00:00
int cycle_;
bool dependent_ = false;
MacroOp* depDst_ = nullptr;
MacroOp* depSrc_ = nullptr;
2019-03-31 11:32:16 +00:00
};
2019-04-11 22:02:22 +00:00
//Size: 3 bytes
2019-03-31 11:32:16 +00:00
const MacroOp MacroOp::Add_rr = MacroOp("add r,r", 3, 1, ExecutionPort::P015);
const MacroOp MacroOp::Sub_rr = MacroOp("sub r,r", 3, 1, ExecutionPort::P015);
2019-04-11 22:02:22 +00:00
const MacroOp MacroOp::Xor_rr = MacroOp("xor r,r", 3, 1, ExecutionPort::P015);
const MacroOp MacroOp::Imul_r = MacroOp("imul r", 3, 4, ExecutionPort::P1, ExecutionPort::P5);
2019-03-31 11:32:16 +00:00
const MacroOp MacroOp::Mul_r = MacroOp("mul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5);
const MacroOp MacroOp::Mov_rr = MacroOp("mov r,r", 3);
2019-04-11 22:02:22 +00:00
//Size: 4 bytes
const MacroOp MacroOp::Lea_sib = MacroOp("lea r,r+r*s", 4, 1, ExecutionPort::P01);
const MacroOp MacroOp::Imul_rr = MacroOp("imul r,r", 4, 3, ExecutionPort::P1);
const MacroOp MacroOp::Ror_ri = MacroOp("ror r,i", 4, 1, ExecutionPort::P05);
//Size: 7 bytes (can be optionally padded with nop to 8 or 9 bytes)
const MacroOp MacroOp::Add_ri = MacroOp("add r,i", 7, 1, ExecutionPort::P015);
2019-03-31 11:32:16 +00:00
const MacroOp MacroOp::Xor_ri = MacroOp("xor r,i", 7, 1, ExecutionPort::P015);
2019-04-11 22:02:22 +00:00
//Size: 10 bytes
const MacroOp MacroOp::Mov_ri64 = MacroOp("mov rax,i64", 10, 1, ExecutionPort::P015);
//Unused:
2019-03-31 11:32:16 +00:00
const MacroOp MacroOp::Ror_rcl = MacroOp("ror r,cl", 3, 1, ExecutionPort::P0, ExecutionPort::P5);
const MacroOp MacroOp::Xor_self = MacroOp("xor rcx,rcx", 3);
const MacroOp MacroOp::Cmp_ri = MacroOp("cmp r,i", 7, 1, ExecutionPort::P015);
const MacroOp MacroOp::Setcc_r = MacroOp("setcc cl", 3, 1, ExecutionPort::P05);
const MacroOp MacroOp::TestJz_fused = MacroOp("testjz r,i", 13, 0, ExecutionPort::P5);
2019-03-31 11:32:16 +00:00
2019-03-31 19:22:36 +00:00
const MacroOp IMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Mul_r, MacroOp::Mov_rr };
const MacroOp ISMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Imul_r, MacroOp::Mov_rr };
const MacroOp IMUL_RCP_ops_array[] = { MacroOp::Mov_ri64, MacroOp(MacroOp::Imul_rr, true) };
2019-03-31 11:32:16 +00:00
class LightInstructionInfo {
public:
const char* getName() const {
return name_;
}
int getSize() const {
2019-03-31 19:22:36 +00:00
return ops_.size();
2019-03-31 11:32:16 +00:00
}
bool isSimple() const {
2019-03-31 19:22:36 +00:00
return getSize() == 1;
2019-03-31 11:32:16 +00:00
}
int getLatency() const {
return latency_;
}
2019-04-11 22:02:22 +00:00
const MacroOp& getOp(int index) const {
2019-03-31 19:22:36 +00:00
return ops_[index];
}
int getType() const {
return type_;
2019-03-31 11:32:16 +00:00
}
2019-03-31 22:38:17 +00:00
int getResultOp() const {
return resultOp_;
}
int getDstOp() const {
return dstOp_;
}
int getSrcOp() const {
return srcOp_;
}
2019-03-31 11:32:16 +00:00
static const LightInstructionInfo ISUB_R;
static const LightInstructionInfo IXOR_R;
static const LightInstructionInfo IADD_RS;
2019-03-31 11:32:16 +00:00
static const LightInstructionInfo IMUL_R;
static const LightInstructionInfo IROR_C;
static const LightInstructionInfo IADD_C7;
static const LightInstructionInfo IXOR_C7;
static const LightInstructionInfo IADD_C8;
static const LightInstructionInfo IXOR_C8;
static const LightInstructionInfo IADD_C9;
static const LightInstructionInfo IXOR_C9;
2019-03-31 11:32:16 +00:00
static const LightInstructionInfo IMULH_R;
static const LightInstructionInfo ISMULH_R;
static const LightInstructionInfo IMUL_RCP;
static const LightInstructionInfo NOP;
private:
const char* name_;
2019-03-31 19:22:36 +00:00
int type_;
std::vector<MacroOp> ops_;
2019-03-31 11:32:16 +00:00
int latency_;
2019-03-31 22:38:17 +00:00
int resultOp_ = 0;
int dstOp_ = 0;
int srcOp_;
2019-03-31 11:32:16 +00:00
LightInstructionInfo(const char* name)
2019-03-31 19:22:36 +00:00
: name_(name), type_(-1), latency_(0) {}
2019-04-11 22:02:22 +00:00
LightInstructionInfo(const char* name, int type, const MacroOp& op, int srcOp)
: name_(name), type_(type), latency_(op.getLatency()), srcOp_(srcOp) {
ops_.push_back(MacroOp(op));
}
template <size_t N>
LightInstructionInfo(const char* name, int type, const MacroOp(&arr)[N], int resultOp, int dstOp, int srcOp)
: name_(name), type_(type), latency_(0), resultOp_(resultOp), dstOp_(dstOp), srcOp_(srcOp) {
for (unsigned i = 0; i < N; ++i) {
ops_.push_back(MacroOp(arr[i]));
latency_ += ops_.back().getLatency();
}
static_assert(N > 1, "Invalid array size");
}
2019-03-31 11:32:16 +00:00
};
const LightInstructionInfo LightInstructionInfo::ISUB_R = LightInstructionInfo("ISUB_R", LightInstructionType::ISUB_R, MacroOp::Sub_rr, 0);
const LightInstructionInfo LightInstructionInfo::IXOR_R = LightInstructionInfo("IXOR_R", LightInstructionType::IXOR_R, MacroOp::Xor_rr, 0);
const LightInstructionInfo LightInstructionInfo::IADD_RS = LightInstructionInfo("IADD_RS", LightInstructionType::IADD_RS, MacroOp::Lea_sib, 0);
const LightInstructionInfo LightInstructionInfo::IMUL_R = LightInstructionInfo("IMUL_R", LightInstructionType::IMUL_R, MacroOp::Imul_rr, 0);
const LightInstructionInfo LightInstructionInfo::IROR_C = LightInstructionInfo("IROR_C", LightInstructionType::IROR_C, MacroOp::Ror_ri, -1);
const LightInstructionInfo LightInstructionInfo::IADD_C7 = LightInstructionInfo("IADD_C7", LightInstructionType::IADD_C7, MacroOp::Add_ri, -1);
const LightInstructionInfo LightInstructionInfo::IXOR_C7 = LightInstructionInfo("IXOR_C7", LightInstructionType::IXOR_C7, MacroOp::Xor_ri, -1);
const LightInstructionInfo LightInstructionInfo::IADD_C8 = LightInstructionInfo("IADD_C8", LightInstructionType::IADD_C8, MacroOp::Add_ri, -1);
const LightInstructionInfo LightInstructionInfo::IXOR_C8 = LightInstructionInfo("IXOR_C8", LightInstructionType::IXOR_C8, MacroOp::Xor_ri, -1);
const LightInstructionInfo LightInstructionInfo::IADD_C9 = LightInstructionInfo("IADD_C9", LightInstructionType::IADD_C9, MacroOp::Add_ri, -1);
const LightInstructionInfo LightInstructionInfo::IXOR_C9 = LightInstructionInfo("IXOR_C9", LightInstructionType::IXOR_C9, MacroOp::Xor_ri, -1);
2019-03-31 22:38:17 +00:00
const LightInstructionInfo LightInstructionInfo::IMULH_R = LightInstructionInfo("IMULH_R", LightInstructionType::IMULH_R, IMULH_R_ops_array, 1, 0, 1);
const LightInstructionInfo LightInstructionInfo::ISMULH_R = LightInstructionInfo("ISMULH_R", LightInstructionType::ISMULH_R, ISMULH_R_ops_array, 1, 0, 1);
const LightInstructionInfo LightInstructionInfo::IMUL_RCP = LightInstructionInfo("IMUL_RCP", LightInstructionType::IMUL_RCP, IMUL_RCP_ops_array, 1, 1, -1);
2019-03-31 11:32:16 +00:00
const LightInstructionInfo LightInstructionInfo::NOP = LightInstructionInfo("NOP");
class DecoderBuffer {
public:
static const DecoderBuffer Default;
2019-03-31 11:32:16 +00:00
template <size_t N>
DecoderBuffer(const char* name, int index, const int(&arr)[N])
: name_(name), index_(index), counts_(arr), opsCount_(N) {}
const int* getCounts() const {
return counts_;
}
int getSize() const {
return opsCount_;
}
int getIndex() const {
return index_;
}
const char* getName() const {
return name_;
}
const DecoderBuffer* fetchNext(int instrType, int cycle, int mulCount, Blake2Generator& gen) const {
2019-04-11 22:02:22 +00:00
//If the current RandomX instruction is "IMULH", the next fetch configuration must be 3-3-10
//because the full 128-bit multiplication instruction is 3 bytes long and decodes to 2 uOPs on Intel CPUs.
//Intel CPUs can decode at most 4 uOPs per cycle, so this requires a 2-1-1 configuration for a total of 3 macro ops.
if (instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R)
2019-04-11 22:02:22 +00:00
return &decodeBuffer3310;
//To make sure that the multiplication port is saturated, a 4-4-4-4 configuration is generated if the number of multiplications
//is lower than the number of cycles.
if (mulCount < cycle + 1)
return &decodeBuffer4444;
2019-04-11 22:02:22 +00:00
//If the current RandomX instruction is "IMUL_RCP", the next buffer must begin with a 4-byte slot for multiplication.
if(instrType == LightInstructionType::IMUL_RCP)
return (gen.getByte() & 1) ? &decodeBuffer484 : &decodeBuffer493;
2019-04-11 22:02:22 +00:00
//Default: select a random fetch configuration.
2019-03-31 11:32:16 +00:00
return fetchNextDefault(gen);
}
private:
const char* name_;
int index_;
const int* counts_;
int opsCount_;
DecoderBuffer() : index_(-1) {}
static const DecoderBuffer decodeBuffer484;
static const DecoderBuffer decodeBuffer7333;
static const DecoderBuffer decodeBuffer3733;
static const DecoderBuffer decodeBuffer493;
static const DecoderBuffer decodeBuffer4444;
static const DecoderBuffer decodeBuffer3310;
static const DecoderBuffer* decodeBuffers[4];
const DecoderBuffer* fetchNextDefault(Blake2Generator& gen) const {
return decodeBuffers[gen.getByte() & 3];
2019-03-31 11:32:16 +00:00
}
};
2019-04-11 22:02:22 +00:00
//these are some of the options how to split a 16-byte window into 3 or 4 x86 instructions.
//RandomX uses instructions with a native size of 3 (sub, xor, mul, mov), 4 (lea, mul), 7 (xor, add immediate) or 10 bytes (mov 64-bit immediate).
//Slots with sizes of 8 or 9 bytes need to be padded with a nop instruction.
const int buffer0[] = { 4, 8, 4 };
const int buffer1[] = { 7, 3, 3, 3 };
const int buffer2[] = { 3, 7, 3, 3 };
const int buffer3[] = { 4, 9, 3 };
const int buffer4[] = { 4, 4, 4, 4 };
const int buffer5[] = { 3, 3, 10 };
const DecoderBuffer DecoderBuffer::decodeBuffer484 = DecoderBuffer("4,8,4", 0, buffer0);
const DecoderBuffer DecoderBuffer::decodeBuffer7333 = DecoderBuffer("7,3,3,3", 1, buffer1);
const DecoderBuffer DecoderBuffer::decodeBuffer3733 = DecoderBuffer("3,7,3,3", 2, buffer2);
const DecoderBuffer DecoderBuffer::decodeBuffer493 = DecoderBuffer("4,9,3", 3, buffer3);
const DecoderBuffer DecoderBuffer::decodeBuffer4444 = DecoderBuffer("4,4,4,4", 4, buffer4);
const DecoderBuffer DecoderBuffer::decodeBuffer3310 = DecoderBuffer("3,3,10", 5, buffer5);
const DecoderBuffer* DecoderBuffer::decodeBuffers[4] = {
&DecoderBuffer::decodeBuffer484,
&DecoderBuffer::decodeBuffer7333,
&DecoderBuffer::decodeBuffer3733,
&DecoderBuffer::decodeBuffer493,
2019-03-31 11:32:16 +00:00
};
const DecoderBuffer DecoderBuffer::Default = DecoderBuffer();
2019-03-31 11:32:16 +00:00
const LightInstructionInfo* slot_3[] = { &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R };
const LightInstructionInfo* slot_3L[] = { &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IMULH_R, &LightInstructionInfo::ISMULH_R };
const LightInstructionInfo* slot_4[] = { &LightInstructionInfo::IROR_C, &LightInstructionInfo::IADD_RS };
const LightInstructionInfo* slot_7[] = { &LightInstructionInfo::IXOR_C7, &LightInstructionInfo::IADD_C7 };
const LightInstructionInfo* slot_8[] = { &LightInstructionInfo::IXOR_C8, &LightInstructionInfo::IADD_C8 };
const LightInstructionInfo* slot_9[] = { &LightInstructionInfo::IXOR_C9, &LightInstructionInfo::IADD_C9 };
2019-03-31 19:22:36 +00:00
const LightInstructionInfo* slot_10 = &LightInstructionInfo::IMUL_RCP;
2019-03-31 22:38:17 +00:00
static bool selectRegister(std::vector<int>& availableRegisters, Blake2Generator& gen, int& reg) {
2019-03-31 19:22:36 +00:00
int index;
2019-03-31 22:38:17 +00:00
if (availableRegisters.size() == 0)
return false;
2019-03-31 19:22:36 +00:00
if (availableRegisters.size() > 1) {
index = gen.getInt32() % availableRegisters.size();
}
else {
index = 0;
}
2019-03-31 22:38:17 +00:00
reg = availableRegisters[index];
return true;
2019-03-31 19:22:36 +00:00
}
2019-03-31 11:32:16 +00:00
class LightInstruction {
public:
2019-03-31 22:38:17 +00:00
void toInstr(Instruction& instr) {
instr.opcode = getType();
2019-03-31 11:32:16 +00:00
instr.dst = dst_;
instr.src = src_ >= 0 ? src_ : dst_;
instr.mod = mod_;
instr.setImm32(imm32_);
}
2019-04-11 22:02:22 +00:00
void createForSlot(Blake2Generator& gen, int slotSize, int fetchType, bool isLast, bool isFirst) {
2019-03-31 11:32:16 +00:00
switch (slotSize)
{
case 3:
if (isLast) {
2019-04-11 22:02:22 +00:00
create(slot_3L[gen.getByte() & 3], gen);
2019-03-31 11:32:16 +00:00
}
else {
2019-04-11 22:02:22 +00:00
create(slot_3[gen.getByte() & 1], gen);
2019-03-31 11:32:16 +00:00
}
2019-04-11 22:02:22 +00:00
break;
2019-03-31 11:32:16 +00:00
case 4:
if (fetchType == 4 && !isLast) {
2019-04-11 22:02:22 +00:00
create(&LightInstructionInfo::IMUL_R, gen);
}
else {
2019-04-11 22:02:22 +00:00
create(slot_4[gen.getByte() & 1], gen);
}
2019-04-11 22:02:22 +00:00
break;
2019-03-31 11:32:16 +00:00
case 7:
2019-04-11 22:02:22 +00:00
create(slot_7[gen.getByte() & 1], gen);
break;
case 8:
2019-04-11 22:02:22 +00:00
create(slot_8[gen.getByte() & 1], gen);
break;
case 9:
2019-04-11 22:02:22 +00:00
create(slot_9[gen.getByte() & 1], gen);
break;
2019-03-31 11:32:16 +00:00
case 10:
2019-04-11 22:02:22 +00:00
create(slot_10, gen);
break;
2019-03-31 11:32:16 +00:00
default:
2019-04-11 22:02:22 +00:00
UNREACHABLE;
2019-03-31 11:32:16 +00:00
}
}
2019-04-11 22:02:22 +00:00
void create(const LightInstructionInfo* info, Blake2Generator& gen) {
info_ = info;
reset();
2019-03-31 19:22:36 +00:00
switch (info->getType())
2019-03-31 11:32:16 +00:00
{
case LightInstructionType::ISUB_R: {
2019-04-11 22:02:22 +00:00
mod_ = 0;
imm32_ = 0;
opGroup_ = LightInstructionType::IADD_RS;
groupParIsSource_ = true;
2019-03-31 11:32:16 +00:00
} break;
case LightInstructionType::IXOR_R: {
2019-04-11 22:02:22 +00:00
mod_ = 0;
imm32_ = 0;
opGroup_ = LightInstructionType::IXOR_R;
groupParIsSource_ = true;
2019-03-31 11:32:16 +00:00
} break;
case LightInstructionType::IADD_RS: {
2019-04-11 22:02:22 +00:00
mod_ = gen.getByte();
imm32_ = 0;
opGroup_ = LightInstructionType::IADD_RS;
groupParIsSource_ = true;
2019-03-31 11:32:16 +00:00
} break;
case LightInstructionType::IMUL_R: {
2019-04-11 22:02:22 +00:00
mod_ = 0;
imm32_ = 0;
opGroup_ = LightInstructionType::IMUL_R;
opGroupPar_ = -1;
} break;
case LightInstructionType::IROR_C: {
2019-04-11 22:02:22 +00:00
mod_ = 0;
do {
2019-04-11 22:02:22 +00:00
imm32_ = gen.getByte() & 63;
} while (imm32_ == 0);
opGroup_ = LightInstructionType::IROR_C;
opGroupPar_ = -1;
2019-03-31 11:32:16 +00:00
} break;
case LightInstructionType::IADD_C7:
case LightInstructionType::IADD_C8:
case LightInstructionType::IADD_C9: {
2019-04-11 22:02:22 +00:00
mod_ = 0;
imm32_ = gen.getInt32();
opGroup_ = LightInstructionType::IADD_C7;
opGroupPar_ = -1;
} break;
case LightInstructionType::IXOR_C7:
case LightInstructionType::IXOR_C8:
case LightInstructionType::IXOR_C9: {
2019-04-11 22:02:22 +00:00
mod_ = 0;
imm32_ = gen.getInt32();
opGroup_ = LightInstructionType::IXOR_C7;
opGroupPar_ = -1;
2019-03-31 11:32:16 +00:00
} break;
case LightInstructionType::IMULH_R: {
2019-04-11 22:02:22 +00:00
canReuse_ = true;
mod_ = 0;
imm32_ = 0;
opGroup_ = LightInstructionType::IMULH_R;
opGroupPar_ = gen.getInt32();
2019-03-31 11:32:16 +00:00
} break;
case LightInstructionType::ISMULH_R: {
2019-04-11 22:02:22 +00:00
canReuse_ = true;
mod_ = 0;
imm32_ = 0;
opGroup_ = LightInstructionType::ISMULH_R;
opGroupPar_ = gen.getInt32();
2019-03-31 11:32:16 +00:00
} break;
case LightInstructionType::IMUL_RCP: {
2019-04-11 22:02:22 +00:00
mod_ = 0;
do {
2019-04-11 22:02:22 +00:00
imm32_ = gen.getInt32();
} while ((imm32_ & (imm32_ - 1)) == 0);
opGroup_ = LightInstructionType::IMUL_RCP;
opGroupPar_ = -1;
2019-03-31 11:32:16 +00:00
} break;
default:
break;
}
}
2019-03-31 22:38:17 +00:00
bool selectDestination(int cycle, RegisterInfo (&registers)[8], Blake2Generator& gen) {
std::vector<int> availableRegisters;
for (unsigned i = 0; i < 8; ++i) {
2019-04-11 22:02:22 +00:00
if (registers[i].latency <= cycle && (canReuse_ || i != src_) && (registers[i].lastOpGroup != opGroup_ || registers[i].lastOpPar != opGroupPar_) && (info_->getType() != LightInstructionType::IADD_RS || i != 5))
2019-03-31 22:38:17 +00:00
availableRegisters.push_back(i);
}
return selectRegister(availableRegisters, gen, dst_);
}
bool selectSource(int cycle, RegisterInfo(&registers)[8], Blake2Generator& gen) {
std::vector<int> availableRegisters;
for (unsigned i = 0; i < 8; ++i) {
if (registers[i].latency <= cycle)
2019-03-31 22:38:17 +00:00
availableRegisters.push_back(i);
}
2019-04-11 22:02:22 +00:00
if (availableRegisters.size() == 2 && info_->getType() == LightInstructionType::IADD_RS) {
if (availableRegisters[0] == 5 || availableRegisters[1] == 5) {
opGroupPar_ = src_ = 5;
return true;
}
}
if (selectRegister(availableRegisters, gen, src_)) {
if (groupParIsSource_)
opGroupPar_ = src_;
return true;
}
return false;
2019-03-31 22:38:17 +00:00
}
2019-03-31 11:32:16 +00:00
int getType() {
2019-04-11 22:02:22 +00:00
return info_->getType();
2019-03-31 11:32:16 +00:00
}
int getSource() {
return src_;
}
int getDestination() {
return dst_;
}
int getGroup() {
return opGroup_;
}
int getGroupPar() {
return opGroupPar_;
}
2019-04-11 22:02:22 +00:00
const LightInstructionInfo& getInfo() const {
return *info_;
2019-03-31 11:32:16 +00:00
}
static const LightInstruction Null;
private:
2019-04-11 22:02:22 +00:00
const LightInstructionInfo* info_;
2019-03-31 22:38:17 +00:00
int src_ = -1;
int dst_ = -1;
2019-03-31 11:32:16 +00:00
int mod_;
uint32_t imm32_;
int opGroup_;
int opGroupPar_;
2019-03-31 22:38:17 +00:00
bool canReuse_ = false;
bool groupParIsSource_ = false;
2019-03-31 11:32:16 +00:00
2019-04-11 22:02:22 +00:00
void reset() {
src_ = dst_ = -1;
canReuse_ = groupParIsSource_ = false;
}
LightInstruction(const LightInstructionInfo* info) : info_(info) {
2019-03-31 19:22:36 +00:00
}
2019-03-31 11:32:16 +00:00
};
2019-03-31 19:22:36 +00:00
const LightInstruction LightInstruction::Null = LightInstruction(&LightInstructionInfo::NOP);
2019-03-31 11:32:16 +00:00
2019-04-11 22:02:22 +00:00
constexpr int CYCLE_MAP_SIZE = RANDOMX_SUPERSCALAR_LATENCY + 3;
constexpr int LOOK_FORWARD_CYCLES = 4;
constexpr int MAX_THROWAWAY_COUNT = 256;
#ifndef _DEBUG
constexpr bool TRACE = false;
constexpr bool INFO = false;
#else
constexpr bool TRACE = true;
constexpr bool INFO = true;
#endif
2019-03-28 14:27:10 +00:00
static int blakeCounter = 0;
2019-04-03 07:53:25 +00:00
template<bool commit>
static int scheduleUop(const MacroOp& mop, ExecutionPort::type(&portBusy)[CYCLE_MAP_SIZE][3], int cycle, int depCycle) {
2019-03-31 19:22:36 +00:00
if (mop.isDependent()) {
cycle = std::max(cycle, depCycle);
}
if (mop.isEliminated()) {
2019-04-03 07:53:25 +00:00
if (commit)
if (TRACE) std::cout << "; (eliminated)" << std::endl;
2019-03-31 19:22:36 +00:00
return cycle;
}
else if (mop.isSimple()) {
if (mop.getUop1() <= ExecutionPort::P5) {
2019-04-03 07:53:25 +00:00
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
2019-03-31 19:22:36 +00:00
if (!portBusy[cycle][mop.getUop1() - 1]) {
2019-04-03 07:53:25 +00:00
if (commit) {
if (TRACE) std::cout << "; P" << mop.getUop1() - 1 << " at cycle " << cycle << std::endl;
portBusy[cycle][mop.getUop1() - 1] = mop.getUop1();
}
2019-03-31 19:22:36 +00:00
return cycle;
}
}
}
else if (mop.getUop1() == ExecutionPort::P01) {
2019-04-03 07:53:25 +00:00
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
2019-03-31 19:22:36 +00:00
if (!portBusy[cycle][0]) {
2019-04-03 07:53:25 +00:00
if (commit) {
if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl;
portBusy[cycle][0] = mop.getUop1();
}
2019-03-31 19:22:36 +00:00
return cycle;
}
if (!portBusy[cycle][1]) {
2019-04-03 07:53:25 +00:00
if (commit) {
if (TRACE) std::cout << "; P1 at cycle " << cycle << std::endl;
portBusy[cycle][1] = mop.getUop1();
2019-04-03 07:53:25 +00:00
}
2019-03-31 19:22:36 +00:00
return cycle;
}
}
}
else if (mop.getUop1() == ExecutionPort::P05) {
2019-04-03 07:53:25 +00:00
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
if (!portBusy[cycle][2]) {
if (commit) {
if (TRACE) std::cout << "; P2 at cycle " << cycle << std::endl;
portBusy[cycle][2] = mop.getUop1();
}
return cycle;
}
2019-03-31 19:22:36 +00:00
if (!portBusy[cycle][0]) {
2019-04-03 07:53:25 +00:00
if (commit) {
if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl;
portBusy[cycle][0] = mop.getUop1();
}
2019-03-31 19:22:36 +00:00
return cycle;
}
}
}
else {
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
2019-03-31 19:22:36 +00:00
if (!portBusy[cycle][2]) {
2019-04-03 07:53:25 +00:00
if (commit) {
if (TRACE) std::cout << "; P2 at cycle " << cycle << std::endl;
portBusy[cycle][2] = mop.getUop1();
}
2019-03-31 19:22:36 +00:00
return cycle;
}
if (!portBusy[cycle][0]) {
if (commit) {
if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl;
portBusy[cycle][0] = mop.getUop1();
}
return cycle;
}
2019-03-31 19:22:36 +00:00
if (!portBusy[cycle][1]) {
2019-04-03 07:53:25 +00:00
if (commit) {
if (TRACE) std::cout << "; P1 at cycle " << cycle << std::endl;
portBusy[cycle][1] = mop.getUop1();
}
2019-03-31 19:22:36 +00:00
return cycle;
}
}
}
}
else {
2019-04-03 07:53:25 +00:00
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
2019-03-31 19:22:36 +00:00
if (!portBusy[cycle][mop.getUop1() - 1] && !portBusy[cycle][mop.getUop2() - 1]) {
2019-04-03 07:53:25 +00:00
if (commit) {
if (TRACE) std::cout << "; P" << mop.getUop1() - 1 << " P" << mop.getUop2() - 1 << " at cycle " << cycle << std::endl;
portBusy[cycle][mop.getUop1() - 1] = mop.getUop1();
portBusy[cycle][mop.getUop2() - 1] = mop.getUop2();
}
2019-03-31 19:22:36 +00:00
return cycle;
}
}
}
2019-04-03 07:53:25 +00:00
if (TRACE) std::cout << "Unable to map operation '" << mop.getName() << "' to execution port (cycle " << cycle << ")" << std::endl;
2019-03-31 19:22:36 +00:00
return -1;
}
double generateLightProg2(LightProgram& prog, Blake2Generator& gen) {
2019-03-31 11:32:16 +00:00
2019-04-03 07:53:25 +00:00
ExecutionPort::type portBusy[CYCLE_MAP_SIZE][3];
2019-03-31 19:22:36 +00:00
memset(portBusy, 0, sizeof(portBusy));
2019-03-31 11:32:16 +00:00
RegisterInfo registers[8];
2019-04-11 22:02:22 +00:00
const DecoderBuffer* decodeBuffer = &DecoderBuffer::Default;
2019-03-31 11:32:16 +00:00
LightInstruction currentInstruction = LightInstruction::Null;
int instrIndex = 0;
int codeSize = 0;
int macroOpCount = 0;
2019-03-31 19:22:36 +00:00
int cycle = 0;
int depCycle = 0;
2019-04-03 07:53:25 +00:00
int retireCycle = 0;
2019-03-31 19:22:36 +00:00
bool portsSaturated = false;
2019-03-31 22:38:17 +00:00
int outIndex = 0;
int mulCount = 0;
2019-04-11 22:02:22 +00:00
int decodeCycle;
2019-03-31 11:32:16 +00:00
2019-04-11 22:02:22 +00:00
//decode instructions for RANDOMX_SUPERSCALAR_LATENCY cycles or until an execution port is saturated.
//Each decode cycle decodes 16 bytes of x86 code.
//Since a decode cycle produces on average 3.45 macro-ops and there are only 3 ALU ports, execution ports are always
//saturated first. The cycle limit is present only to guarantee loop termination.
for (decodeCycle = 0; decodeCycle < RANDOMX_SUPERSCALAR_LATENCY && !portsSaturated && outIndex < RANDOMX_SUPERSCALAR_MAX_SIZE; ++decodeCycle) {
2019-03-31 19:22:36 +00:00
2019-04-11 22:02:22 +00:00
//select a fetch/decode configuration
decodeBuffer = decodeBuffer->fetchNext(currentInstruction.getType(), decodeCycle, mulCount, gen);
if (TRACE) std::cout << "; ------------- fetch cycle " << cycle << " (" << decodeBuffer->getName() << ")" << std::endl;
int bufferIndex = 0;
2019-03-31 11:32:16 +00:00
2019-04-11 22:02:22 +00:00
//fill all instruction slots in the current fetch/decode buffer
while (bufferIndex < decodeBuffer->getSize()) {
2019-04-01 17:04:08 +00:00
int topCycle = cycle;
2019-04-11 22:02:22 +00:00
//if we have created all macro-ops for the current RandomX instruction, create a new instruction
2019-03-31 19:22:36 +00:00
if (instrIndex >= currentInstruction.getInfo().getSize()) {
2019-04-03 07:53:25 +00:00
if (portsSaturated)
break;
2019-04-11 22:02:22 +00:00
currentInstruction.createForSlot(gen, decodeBuffer->getCounts()[bufferIndex], decodeBuffer->getIndex(), decodeBuffer->getSize() == bufferIndex + 1, bufferIndex == 0);
2019-03-31 11:32:16 +00:00
instrIndex = 0;
2019-04-03 07:53:25 +00:00
if (TRACE) std::cout << "; " << currentInstruction.getInfo().getName() << std::endl;
2019-03-31 11:32:16 +00:00
}
2019-04-11 22:02:22 +00:00
const MacroOp& mop = currentInstruction.getInfo().getOp(instrIndex);
2019-03-31 19:22:36 +00:00
2019-04-03 07:53:25 +00:00
if (TRACE) std::cout << mop.getName() << " ";
2019-04-11 22:02:22 +00:00
//calculate the earliest cycle when this macro-op (all of its uOPs) can be scheduled for execution
2019-04-03 07:53:25 +00:00
int scheduleCycle = scheduleUop<false>(mop, portBusy, cycle, depCycle);
if (scheduleCycle < 0) {
if (TRACE) std::cout << "; Failed at cycle " << cycle << std::endl;
return 0;
2019-04-03 07:53:25 +00:00
}
2019-03-31 22:38:17 +00:00
2019-04-11 22:02:22 +00:00
//find a source register (if applicable) that will be ready when this instruction executes
if (instrIndex == currentInstruction.getInfo().getSrcOp()) {
2019-04-11 22:02:22 +00:00
int forward;
//if no suitable operand is ready, look up to LOOK_FORWARD_CYCLES forward
for (forward = 0; forward < LOOK_FORWARD_CYCLES && !currentInstruction.selectSource(scheduleCycle, registers, gen); ++forward) {
2019-04-03 07:53:25 +00:00
if (TRACE) std::cout << "; src STALL at cycle " << cycle << std::endl;
2019-03-31 22:38:17 +00:00
++scheduleCycle;
++cycle;
}
2019-04-11 22:02:22 +00:00
//if no register was found, throw the instruction away and try another one
if (forward == LOOK_FORWARD_CYCLES) {
2019-04-01 17:04:08 +00:00
instrIndex = currentInstruction.getInfo().getSize();
2019-04-03 07:53:25 +00:00
if (TRACE) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl;
2019-04-01 17:04:08 +00:00
continue;
}
2019-04-03 07:53:25 +00:00
if (TRACE) std::cout << "; src = r" << currentInstruction.getSource() << std::endl;
2019-03-31 22:38:17 +00:00
}
2019-04-11 22:02:22 +00:00
//find a destination register that will be ready when this instruction executes
if (instrIndex == currentInstruction.getInfo().getDstOp()) {
2019-04-11 22:02:22 +00:00
int forward;
for (forward = 0; forward < LOOK_FORWARD_CYCLES && !currentInstruction.selectDestination(scheduleCycle, registers, gen); ++forward) {
2019-04-03 07:53:25 +00:00
if (TRACE) std::cout << "; dst STALL at cycle " << cycle << std::endl;
2019-03-31 22:38:17 +00:00
++scheduleCycle;
++cycle;
}
2019-04-11 22:02:22 +00:00
if (forward == LOOK_FORWARD_CYCLES) { //throw instruction away
2019-04-01 17:04:08 +00:00
instrIndex = currentInstruction.getInfo().getSize();
2019-04-03 07:53:25 +00:00
if (TRACE) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl;
2019-04-01 17:04:08 +00:00
continue;
}
2019-04-03 07:53:25 +00:00
if (TRACE) std::cout << "; dst = r" << currentInstruction.getDestination() << std::endl;
2019-03-31 22:38:17 +00:00
}
2019-04-11 22:02:22 +00:00
//recalculate when the instruction can be scheduled for execution based on operand availability
scheduleCycle = scheduleUop<true>(mop, portBusy, scheduleCycle, scheduleCycle);
2019-04-11 22:02:22 +00:00
//calculate when the result will be ready
depCycle = scheduleCycle + mop.getLatency();
2019-04-11 22:02:22 +00:00
//if this instruction writes the result, modify register information
// RegisterInfo.latency - which cycle the register will be ready
// RegisterInfo.lastOpGroup - the last operation that was applied to the register
// RegisterInfo.lastOpPar - the last operation parameter
2019-03-31 22:38:17 +00:00
if (instrIndex == currentInstruction.getInfo().getResultOp()) {
int dst = currentInstruction.getDestination();
RegisterInfo& ri = registers[dst];
2019-04-03 07:53:25 +00:00
retireCycle = depCycle;
ri.latency = retireCycle;
ri.lastOpGroup = currentInstruction.getGroup();
ri.lastOpPar = currentInstruction.getGroupPar();
2019-04-03 07:53:25 +00:00
if (TRACE) std::cout << "; RETIRED at cycle " << retireCycle << std::endl;
2019-03-31 22:38:17 +00:00
}
2019-03-31 19:22:36 +00:00
codeSize += mop.getSize();
2019-04-11 22:02:22 +00:00
bufferIndex++;
2019-03-31 11:32:16 +00:00
instrIndex++;
macroOpCount++;
2019-04-11 22:02:22 +00:00
//terminating condition
if (scheduleCycle >= RANDOMX_SUPERSCALAR_LATENCY) {
2019-03-31 19:22:36 +00:00
portsSaturated = true;
}
2019-04-01 17:04:08 +00:00
cycle = topCycle;
2019-04-11 22:02:22 +00:00
//when all macro-ops of the current instruction have been issued, add the instruction into the program
2019-04-03 07:53:25 +00:00
if (instrIndex >= currentInstruction.getInfo().getSize()) {
currentInstruction.toInstr(prog(outIndex++));
mulCount += isMul(currentInstruction.getType());
2019-04-03 07:53:25 +00:00
}
2019-03-31 19:22:36 +00:00
}
++cycle;
}
if(INFO) std::cout << "; ALU port utilization:" << std::endl;
if (INFO) std::cout << "; (* = in use, _ = idle)" << std::endl;
2019-03-31 19:22:36 +00:00
2019-04-03 07:53:25 +00:00
int portCycles = 0;
2019-04-11 22:02:22 +00:00
for (int i = 0; i < CYCLE_MAP_SIZE; ++i) {
2019-04-03 07:53:25 +00:00
std::cout << "; " << std::setw(3) << i << " ";
2019-03-31 19:22:36 +00:00
for (int j = 0; j < 3; ++j) {
std::cout << (portBusy[i][j] ? '*' : '_');
2019-04-03 07:53:25 +00:00
portCycles += !!portBusy[i][j];
2019-03-31 19:22:36 +00:00
}
std::cout << std::endl;
2019-04-11 22:02:22 +00:00
}
double ipc = (macroOpCount / (double)retireCycle);
2019-03-31 22:38:17 +00:00
if (INFO) std::cout << "; code size " << codeSize << " bytes" << std::endl;
if (INFO) std::cout << "; x86 macro-ops: " << macroOpCount << std::endl;
2019-04-11 22:02:22 +00:00
if (INFO) std::cout << "; fetch cycles: " << decodeCycle << std::endl;
if (INFO) std::cout << "; RandomX instructions: " << outIndex << std::endl;
if (INFO) std::cout << "; Execution time: " << retireCycle << " cycles" << std::endl;
if (INFO) std::cout << "; IPC = " << ipc << std::endl;
if (INFO) std::cout << "; Port-cycles: " << portCycles << std::endl;
if (INFO) std::cout << "; Multiplications: " << mulCount << std::endl;
2019-04-03 07:53:25 +00:00
int asicLatency[8];
memset(asicLatency, 0, sizeof(asicLatency));
2019-04-11 22:02:22 +00:00
//Calculate ASIC latency:
//Assumes 1 cycle latency for all operations and unlimited parallelization.
2019-04-03 07:53:25 +00:00
for (int i = 0; i < outIndex; ++i) {
Instruction& instr = prog(i);
int latDst = asicLatency[instr.dst] + 1;
int latSrc = instr.dst != instr.src ? asicLatency[instr.src] + 1 : 0;
asicLatency[instr.dst] = std::max(latDst, latSrc);
}
2019-04-11 22:02:22 +00:00
//address register is the register with the highest ASIC latency
int asicLatencyMax = 0;
int addressReg = 0;
for (int i = 0; i < 8; ++i) {
2019-04-11 22:02:22 +00:00
if (asicLatency[i] > asicLatencyMax) {
asicLatencyMax = asicLatency[i];
addressReg = i;
}
}
2019-04-11 22:02:22 +00:00
if (INFO) std::cout << "; ASIC latency: " << asicLatencyMax << std::endl;
2019-04-03 07:53:25 +00:00
if (INFO) {
std::cout << "; ASIC latency:" << std::endl;
for (int i = 0; i < 8; ++i) {
std::cout << "; r" << i << " = " << asicLatency[i] << std::endl;
}
if (INFO) std::cout << "; CPU latency:" << std::endl;
for (int i = 0; i < 8; ++i) {
std::cout << "; r" << i << " = " << registers[i].latency << std::endl;
}
2019-04-03 07:53:25 +00:00
}
2019-03-31 22:38:17 +00:00
prog.setSize(outIndex);
prog.setAddressRegister(addressReg);
return outIndex;
2019-03-31 11:32:16 +00:00
}
2019-03-28 14:27:10 +00:00
}