mirror of
https://git.wownero.com/wownero/RandomWOW.git
synced 2024-12-22 15:58:53 +00:00
342 lines
12 KiB
C++
342 lines
12 KiB
C++
|
/*
|
||
|
Copyright (c) 2019 tevador
|
||
|
|
||
|
This file is part of RandomX.
|
||
|
|
||
|
RandomX is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
RandomX is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with RandomX. If not, see<http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include "blake2/blake2.h"
|
||
|
#include "configuration.h"
|
||
|
#include "Program.hpp"
|
||
|
#include "blake2/endian.h";
|
||
|
#include <iostream>
|
||
|
|
||
|
namespace RandomX {
|
||
|
|
||
|
namespace LightInstruction {
|
||
|
constexpr int IADD_R = 0;
|
||
|
constexpr int IADD_RC = 1;
|
||
|
constexpr int ISUB_R = 2;
|
||
|
constexpr int IMUL_9C = 3;
|
||
|
constexpr int IMUL_R = 4;
|
||
|
constexpr int IMULH_R = 5;
|
||
|
constexpr int ISMULH_R = 6;
|
||
|
constexpr int IMUL_RCP = 7;
|
||
|
constexpr int IXOR_R = 8;
|
||
|
constexpr int IROR_R = 9;
|
||
|
constexpr int COND_R = 10;
|
||
|
constexpr int COUNT = 11;
|
||
|
}
|
||
|
|
||
|
const int lightInstruction[] = {
|
||
|
LightInstruction::IADD_RC,
|
||
|
LightInstruction::IADD_RC,
|
||
|
LightInstruction::ISUB_R,
|
||
|
LightInstruction::ISUB_R,
|
||
|
LightInstruction::IMUL_9C,
|
||
|
LightInstruction::IMUL_R,
|
||
|
LightInstruction::IMUL_R,
|
||
|
LightInstruction::IMUL_R,
|
||
|
LightInstruction::IMULH_R,
|
||
|
LightInstruction::ISMULH_R,
|
||
|
LightInstruction::IMUL_RCP,
|
||
|
LightInstruction::IXOR_R,
|
||
|
LightInstruction::IXOR_R,
|
||
|
LightInstruction::IROR_R,
|
||
|
LightInstruction::IROR_R,
|
||
|
LightInstruction::COND_R
|
||
|
};
|
||
|
|
||
|
namespace LightInstructionOpcode {
|
||
|
constexpr int IADD_R = 0;
|
||
|
constexpr int IADD_RC = RANDOMX_FREQ_IADD_R + RANDOMX_FREQ_IADD_M;
|
||
|
constexpr int ISUB_R = IADD_RC + RANDOMX_FREQ_IADD_RC;
|
||
|
constexpr int IMUL_9C = ISUB_R + RANDOMX_FREQ_ISUB_R + RANDOMX_FREQ_ISUB_M;
|
||
|
constexpr int IMUL_R = IMUL_9C + RANDOMX_FREQ_IMUL_9C;
|
||
|
constexpr int IMULH_R = IMUL_R + RANDOMX_FREQ_IMUL_R + RANDOMX_FREQ_IMUL_M;
|
||
|
constexpr int ISMULH_R = IMULH_R + RANDOMX_FREQ_IMULH_R + RANDOMX_FREQ_IMULH_M;
|
||
|
constexpr int IMUL_RCP = ISMULH_R + RANDOMX_FREQ_ISMULH_R + RANDOMX_FREQ_ISMULH_M;;
|
||
|
constexpr int IXOR_R = IMUL_RCP + RANDOMX_FREQ_IMUL_RCP + RANDOMX_FREQ_INEG_R;
|
||
|
constexpr int IROR_R = IXOR_R + RANDOMX_FREQ_IXOR_R + RANDOMX_FREQ_IXOR_M;
|
||
|
constexpr int COND_R = IROR_R + RANDOMX_FREQ_IROR_R + RANDOMX_FREQ_IROL_R + RANDOMX_FREQ_ISWAP_R + RANDOMX_FREQ_FSWAP_R + RANDOMX_FREQ_FADD_R + RANDOMX_FREQ_FADD_M + RANDOMX_FREQ_FSUB_R + RANDOMX_FREQ_FSUB_M + RANDOMX_FREQ_FSCAL_R + RANDOMX_FREQ_FMUL_R + RANDOMX_FREQ_FDIV_M + RANDOMX_FREQ_FSQRT_R;
|
||
|
}
|
||
|
|
||
|
const int lightInstructionOpcode[] = {
|
||
|
LightInstructionOpcode::IADD_R,
|
||
|
LightInstructionOpcode::IADD_RC,
|
||
|
LightInstructionOpcode::ISUB_R,
|
||
|
LightInstructionOpcode::IMUL_9C,
|
||
|
LightInstructionOpcode::IMUL_R,
|
||
|
LightInstructionOpcode::IMULH_R,
|
||
|
LightInstructionOpcode::ISMULH_R,
|
||
|
LightInstructionOpcode::IMUL_RCP,
|
||
|
LightInstructionOpcode::IXOR_R,
|
||
|
LightInstructionOpcode::IROR_R,
|
||
|
LightInstructionOpcode::COND_R
|
||
|
};
|
||
|
|
||
|
constexpr int ALU_COUNT_MUL = 1;
|
||
|
constexpr int ALU_COUNT = 4;
|
||
|
constexpr int LIGHT_OPCODE_BITS = 4;
|
||
|
constexpr int V4_SRC_INDEX_BITS = 3;
|
||
|
constexpr int V4_DST_INDEX_BITS = 3;
|
||
|
|
||
|
static int blakeCounter = 0;
|
||
|
|
||
|
// If we don't have enough data available, generate more
|
||
|
static FORCE_INLINE void check_data(size_t& data_index, const size_t bytes_needed, uint8_t* data, const size_t data_size)
|
||
|
{
|
||
|
if (data_index + bytes_needed > data_size)
|
||
|
{
|
||
|
std::cout << "Calling Blake " << (++blakeCounter) << std::endl;
|
||
|
blake2b(data, data_size, data, data_size, nullptr, 0);
|
||
|
data_index = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void generateLightProgram(LightProgram& prog, const void* seed, int indexRegister) {
|
||
|
|
||
|
// Source: https://www.agner.org/optimize/instruction_tables.pdf
|
||
|
const int op_latency[LightInstruction::COUNT] = { 1, 2, 1, 2, 3, 5, 5, 4, 1, 2, 5 };
|
||
|
|
||
|
// Instruction latencies for theoretical ASIC implementation
|
||
|
const int asic_op_latency[LightInstruction::COUNT] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
|
||
|
|
||
|
// Available ALUs for each instruction
|
||
|
const int op_ALUs[LightInstruction::COUNT] = { ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT };
|
||
|
|
||
|
uint8_t data[64];
|
||
|
memset(data, 0, sizeof(data));
|
||
|
memcpy(data, seed, SeedSize);
|
||
|
|
||
|
// Set data_index past the last byte in data
|
||
|
// to trigger full data update with blake hash
|
||
|
// before we start using it
|
||
|
size_t data_index = sizeof(data);
|
||
|
|
||
|
int code_size;
|
||
|
|
||
|
do {
|
||
|
uint8_t opcode;
|
||
|
uint8_t dst_index;
|
||
|
uint8_t src_index;
|
||
|
uint32_t imm32 = 0;
|
||
|
|
||
|
int latency[8];
|
||
|
int asic_latency[9];
|
||
|
|
||
|
// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
|
||
|
// byte 0: current value of the destination register
|
||
|
// byte 1: instruction opcode
|
||
|
// byte 2: current value of the source register
|
||
|
//
|
||
|
// Registers R4-R8 are constant and are treated as having the same value because when we do
|
||
|
// the same operation twice with two constant source registers, it can be optimized into a single operation
|
||
|
uint64_t inst_data[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
|
||
|
|
||
|
bool alu_busy[RANDOMX_LPROG_LATENCY + 1][ALU_COUNT];
|
||
|
bool is_rotation[LightInstruction::COUNT];
|
||
|
bool rotated[8];
|
||
|
int rotate_count = 0;
|
||
|
|
||
|
memset(latency, 0, sizeof(latency));
|
||
|
memset(asic_latency, 0, sizeof(asic_latency));
|
||
|
memset(alu_busy, 0, sizeof(alu_busy));
|
||
|
memset(is_rotation, 0, sizeof(is_rotation));
|
||
|
memset(rotated, 0, sizeof(rotated));
|
||
|
is_rotation[LightInstruction::IROR_R] = true;
|
||
|
|
||
|
int num_retries = 0;
|
||
|
code_size = 0;
|
||
|
|
||
|
int total_iterations = 0;
|
||
|
|
||
|
// Generate random code to achieve minimal required latency for our abstract CPU
|
||
|
// Try to get this latency for all 4 registers
|
||
|
while (((latency[0] < RANDOMX_LPROG_LATENCY) || (latency[1] < RANDOMX_LPROG_LATENCY) || (latency[2] < RANDOMX_LPROG_LATENCY) || (latency[3] < RANDOMX_LPROG_LATENCY)
|
||
|
|| (latency[4] < RANDOMX_LPROG_LATENCY) || (latency[5] < RANDOMX_LPROG_LATENCY) || (latency[6] < RANDOMX_LPROG_LATENCY) || (latency[7] < RANDOMX_LPROG_LATENCY)) && (num_retries < 64))
|
||
|
{
|
||
|
// Fail-safe to guarantee loop termination
|
||
|
++total_iterations;
|
||
|
if (total_iterations > 1024) {
|
||
|
std::cout << "total_iterations = " << total_iterations << std::endl;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
check_data(data_index, 1, data, sizeof(data));
|
||
|
const uint8_t b1 = data[data_index++];
|
||
|
int instrType = lightInstruction[b1 & ((1 << LIGHT_OPCODE_BITS) - 1)];
|
||
|
|
||
|
check_data(data_index, 1, data, sizeof(data));
|
||
|
const uint8_t b2 = data[data_index++];
|
||
|
dst_index = b2 & ((1 << V4_DST_INDEX_BITS) - 1);
|
||
|
src_index = (b2 >> (V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1);
|
||
|
|
||
|
const int a = dst_index;
|
||
|
int b = src_index;
|
||
|
|
||
|
// Don't do rotation with the same destination twice because it's equal to a single rotation
|
||
|
if (is_rotation[instrType] && rotated[a])
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized:
|
||
|
// 2x IADD_RC(a, b, C) = IADD_RC(a, b*2, C1+C2)
|
||
|
// 2x ISUB_R(a, b) = ISUB_R(a, 2*b)
|
||
|
// 2x IMUL_R(a, b) = IMUL_R(a, b*b)
|
||
|
// 2x IMUL_9C(a, C) = 9 * (9 * a + C1) + C2 = 81 * a + (9 * C1 + C2)
|
||
|
// 2x IMUL_RCP(a, C) = a * (C * C)
|
||
|
// 2x IXOR_R = NOP
|
||
|
// 2x IROR_R(a, b) = IROR_R(a, 2*b)
|
||
|
if (instrType != LightInstruction::IMULH_R && instrType != LightInstruction::ISMULH_R && ((inst_data[a] & 0xFFFF00) == (instrType << 8) + ((inst_data[b] & 255) << 16)))
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if ((instrType == LightInstruction::IADD_RC) || (instrType == LightInstruction::IMUL_9C) || (instrType == LightInstruction::IMUL_RCP) || (instrType == LightInstruction::COND_R) || ((instrType != LightInstruction::IMULH_R) && (instrType != LightInstruction::ISMULH_R) && (a == b)))
|
||
|
{
|
||
|
check_data(data_index, 4, data, sizeof(data));
|
||
|
imm32 = load32(&data[data_index++]);
|
||
|
}
|
||
|
|
||
|
// Find which ALU is available (and when) for this instruction
|
||
|
int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b];
|
||
|
int alu_index = -1;
|
||
|
while (next_latency < RANDOMX_LPROG_LATENCY)
|
||
|
{
|
||
|
for (int i = op_ALUs[instrType] - 1; i >= 0; --i)
|
||
|
{
|
||
|
if (!alu_busy[next_latency][i])
|
||
|
{
|
||
|
// ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
|
||
|
if ((instrType == LightInstruction::IADD_RC || instrType == LightInstruction::IMUL_9C || instrType == LightInstruction::IMULH_R || instrType == LightInstruction::ISMULH_R) && alu_busy[next_latency + 1][i])
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Rotation can only start when previous rotation is finished, so do an additional availability check
|
||
|
if (is_rotation[instrType] && (next_latency < rotate_count * op_latency[instrType]))
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
alu_index = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (alu_index >= 0)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
++next_latency;
|
||
|
}
|
||
|
|
||
|
// Don't generate instructions that leave some register unchanged for more than 15 cycles
|
||
|
if (next_latency > latency[a] + 15)
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
next_latency += op_latency[instrType];
|
||
|
|
||
|
if (next_latency <= RANDOMX_LPROG_LATENCY)
|
||
|
{
|
||
|
if (is_rotation[instrType])
|
||
|
{
|
||
|
++rotate_count;
|
||
|
}
|
||
|
|
||
|
// Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined
|
||
|
alu_busy[next_latency - op_latency[instrType]][alu_index] = true;
|
||
|
latency[a] = next_latency;
|
||
|
|
||
|
// ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple
|
||
|
asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[instrType];
|
||
|
|
||
|
rotated[a] = is_rotation[instrType];
|
||
|
|
||
|
inst_data[a] = code_size + (instrType << 8) + ((inst_data[b] & 255) << 16);
|
||
|
|
||
|
prog(code_size).opcode = lightInstructionOpcode[instrType];
|
||
|
prog(code_size).dst = dst_index;
|
||
|
prog(code_size).src = src_index;
|
||
|
prog(code_size).setImm32(imm32);
|
||
|
|
||
|
if (instrType == LightInstruction::IADD_RC || instrType == LightInstruction::IMUL_9C || instrType == LightInstruction::IMULH_R || instrType == LightInstruction::ISMULH_R)
|
||
|
{
|
||
|
// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
|
||
|
alu_busy[next_latency - op_latency[instrType] + 1][alu_index] = true;
|
||
|
}
|
||
|
|
||
|
++code_size;
|
||
|
if (code_size >= RANDOMX_LPROG_MIN_SIZE)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
++num_retries;
|
||
|
std::cout << "Retry " << num_retries << " with code_size = " << code_size << ", next_latency = " << next_latency << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ASIC has more execution resources and can extract as much parallelism from the code as possible
|
||
|
// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
|
||
|
// Get this latency for at least 1 of the 4 registers
|
||
|
const int prev_code_size = code_size;
|
||
|
if ((code_size < RANDOMX_LPROG_MAX_SIZE) && (asic_latency[indexRegister] < RANDOMX_LPROG_ASIC_LATENCY))
|
||
|
{
|
||
|
int min_idx = indexRegister;
|
||
|
int max_idx = 0;
|
||
|
for (int i = 1; i < 8; ++i)
|
||
|
{
|
||
|
//if (asic_latency[i] < asic_latency[min_idx]) min_idx = i;
|
||
|
if (asic_latency[i] > asic_latency[max_idx]) max_idx = i;
|
||
|
}
|
||
|
|
||
|
const int pattern[3] = { LightInstruction::IMUL_R, LightInstruction::IROR_R, LightInstruction::IMUL_R };
|
||
|
const int instrType = pattern[(code_size - prev_code_size) % 3];
|
||
|
latency[min_idx] = latency[max_idx] + op_latency[instrType];
|
||
|
asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[instrType];
|
||
|
|
||
|
prog(code_size).opcode = lightInstructionOpcode[instrType];
|
||
|
prog(code_size).dst = min_idx;
|
||
|
prog(code_size).src = max_idx;
|
||
|
|
||
|
++code_size;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < 8; ++i) {
|
||
|
std::cout << "Latency " << i << " = " << latency[i] << std::endl;
|
||
|
}
|
||
|
|
||
|
std::cout << "Code size = " << code_size << std::endl;
|
||
|
std::cout << "ALUs:" << std::endl;
|
||
|
for (int i = 0; i < RANDOMX_LPROG_LATENCY + 1; ++i) {
|
||
|
for (int j = 0; j < ALU_COUNT; ++j) {
|
||
|
std::cout << (alu_busy[i][j] ? '*' : '_');
|
||
|
}
|
||
|
std::cout << std::endl;
|
||
|
}
|
||
|
|
||
|
// There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time
|
||
|
// It never does more than 4 iterations for all block heights < 10,000,000
|
||
|
} while ((code_size < RANDOMX_LPROG_MIN_SIZE) || (code_size > RANDOMX_LPROG_MAX_SIZE));
|
||
|
|
||
|
prog.setSize(code_size);
|
||
|
}
|
||
|
}
|