wownero/src/ringct/rctSigs.cpp
moneromooo-monero d93746b6d3
rct: rework the verification preparation process
The whole rct data apart from the MLSAGs is now included in
the signed message, to avoid malleability issues.

Instead of passing the data that's not serialized as extra
parameters to the verification API, the transaction is modified
to fill all that information. This means the transaction can
not be const anymore, but it cleaner in other ways.
2016-08-28 21:30:16 +01:00

895 lines
37 KiB
C++

// Copyright (c) 2016, Monero Research Labs
//
// Author: Shen Noether <shen.noether@gmx.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "misc_log_ex.h"
#include "rctSigs.h"
using namespace crypto;
using namespace std;
namespace rct {
//Schnorr Non-linkable
//Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2
//Ver Verifies that signer knows an "x" such that xG = one of P1 or P2
//These are called in the below ASNL sig generation
void GenSchnorrNonLinkable(key & L1, key & s1, key & s2, const key & x, const key & P1, const key & P2, int index) {
key c1, c2, L2;
key a = skGen();
if (index == 0) {
scalarmultBase(L1, a);
hash_to_scalar(c2, L1);
skGen(s2);
addKeys2(L2, s2, c2, P2);
hash_to_scalar(c1, L2);
//s1 = a - x * c1
sc_mulsub(s1.bytes, x.bytes, c1.bytes, a.bytes);
}
else if (index == 1) {
scalarmultBase(L2, a);
hash_to_scalar(c1, L2);
skGen(s1);
addKeys2(L1, s1, c1, P1);
hash_to_scalar(c2, L1);
sc_mulsub(s2.bytes, x.bytes, c2.bytes, a.bytes);
}
else {
throw std::runtime_error("GenSchnorrNonLinkable: invalid index (should be 0 or 1)");
}
}
//Schnorr Non-linkable
//Gen Gives a signature (L1, s1, s2) proving that the sender knows "x" such that xG = one of P1 or P2
//Ver Verifies that signer knows an "x" such that xG = one of P1 or P2
//These are called in the below ASNL sig generation
bool VerSchnorrNonLinkable(const key & P1, const key & P2, const key & L1, const key & s1, const key & s2) {
key c2, L2, c1, L1p;
hash_to_scalar(c2, L1);
addKeys2(L2, s2, c2, P2);
hash_to_scalar(c1, L2);
addKeys2(L1p, s1, c1, P1);
return equalKeys(L1, L1p);
}
//Aggregate Schnorr Non-linkable Ring Signature (ASNL)
// c.f. http://eprint.iacr.org/2015/1098 section 5.
// These are used in range proofs (alternatively Borromean could be used)
// Gen gives a signature which proves the signer knows, for each i,
// an x[i] such that x[i]G = one of P1[i] or P2[i]
// Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i
asnlSig GenASNL(key64 x, key64 P1, key64 P2, bits indices) {
DP("Generating Aggregate Schnorr Non-linkable Ring Signature\n");
key64 s1;
int j = 0;
asnlSig rv;
rv.s = zero();
for (j = 0; j < ATOMS; j++) {
GenSchnorrNonLinkable(rv.L1[j], s1[j], rv.s2[j], x[j], P1[j], P2[j], (int)indices[j]);
sc_add(rv.s.bytes, rv.s.bytes, s1[j].bytes);
}
return rv;
}
//Aggregate Schnorr Non-linkable Ring Signature (ASNL)
// c.f. http://eprint.iacr.org/2015/1098 section 5.
// These are used in range proofs (alternatively Borromean could be used)
// Gen gives a signature which proves the signer knows, for each i,
// an x[i] such that x[i]G = one of P1[i] or P2[i]
// Ver Verifies the signer knows a key for one of P1[i], P2[i] at each i
bool VerASNL(const key64 P1, const key64 P2, const asnlSig &as) {
DP("Verifying Aggregate Schnorr Non-linkable Ring Signature\n");
key LHS = identity();
key RHS = scalarmultBase(as.s);
key c2, L2, c1;
int j = 0;
for (j = 0; j < ATOMS; j++) {
hash_to_scalar(c2, as.L1[j]);
addKeys2(L2, as.s2[j], c2, P2[j]);
addKeys(LHS, LHS, as.L1[j]);
hash_to_scalar(c1, L2);
addKeys(RHS, RHS, scalarmultKey(P1[j], c1));
}
key cc;
sc_sub(cc.bytes, LHS.bytes, RHS.bytes);
return sc_isnonzero(cc.bytes) == 0;
}
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
//These are aka MG signatutes in earlier drafts of the ring ct paper
// c.f. http://eprint.iacr.org/2015/1098 section 2.
// keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
// Gen creates a signature which proves that for some column in the keymatrix "pk"
// the signer knows a secret key for each row in that column
// Ver verifies that the MG sig was created correctly
keyV keyImageV(const keyV &xx) {
keyV II(xx.size());
size_t i = 0;
for (i = 0; i < xx.size(); i++) {
II[i] = scalarmultKey(hashToPoint(scalarmultBase(xx[i])), xx[i]);
}
return II;
}
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
//This is a just slghtly more efficient version than the ones described below
//(will be explained in more detail in Ring Multisig paper
//These are aka MG signatutes in earlier drafts of the ring ct paper
// c.f. http://eprint.iacr.org/2015/1098 section 2.
// keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
// Gen creates a signature which proves that for some column in the keymatrix "pk"
// the signer knows a secret key for each row in that column
// Ver verifies that the MG sig was created correctly
mgSig MLSAG_Gen(key message, const keyM & pk, const keyV & xx, const unsigned int index, size_t dsRows) {
mgSig rv;
size_t cols = pk.size();
CHECK_AND_ASSERT_THROW_MES(cols >= 2, "Error! What is c if cols = 1!");
CHECK_AND_ASSERT_THROW_MES(index < cols, "Index out of range");
size_t rows = pk[0].size();
CHECK_AND_ASSERT_THROW_MES(rows >= 1, "Empty pk");
for (size_t i = 1; i < cols; ++i) {
CHECK_AND_ASSERT_THROW_MES(pk[i].size() == rows, "pk is not rectangular");
}
CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "Bad xx size");
CHECK_AND_ASSERT_THROW_MES(dsRows <= rows, "Bad dsRows size");
size_t i = 0, j = 0, ii = 0;
key c, c_old, L, R, Hi;
sc_0(c_old.bytes);
vector<geDsmp> Ip(dsRows);
rv.II = keyV(dsRows);
keyV alpha(rows);
keyV aG(rows);
rv.ss = keyM(cols, aG);
keyV aHP(dsRows);
keyV toHash(1 + 3 * dsRows + 2 * (rows - dsRows));
toHash[0] = message;
DP("here1");
for (i = 0; i < dsRows; i++) {
skpkGen(alpha[i], aG[i]); //need to save alphas for later..
Hi = hashToPoint(pk[index][i]);
aHP[i] = scalarmultKey(Hi, alpha[i]);
toHash[3 * i + 1] = pk[index][i];
toHash[3 * i + 2] = aG[i];
toHash[3 * i + 3] = aHP[i];
rv.II[i] = scalarmultKey(Hi, xx[i]);
precomp(Ip[i].k, rv.II[i]);
}
size_t ndsRows = 3 * dsRows; //non Double Spendable Rows (see identity chains paper)
for (i = dsRows, ii = 0 ; i < rows ; i++, ii++) {
skpkGen(alpha[i], aG[i]); //need to save alphas for later..
toHash[ndsRows + 2 * ii + 1] = pk[index][i];
toHash[ndsRows + 2 * ii + 2] = aG[i];
}
c_old = hash_to_scalar(toHash);
i = (index + 1) % cols;
if (i == 0) {
copy(rv.cc, c_old);
}
while (i != index) {
rv.ss[i] = skvGen(rows);
sc_0(c.bytes);
for (j = 0; j < dsRows; j++) {
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
hashToPoint(Hi, pk[i][j]);
addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
toHash[3 * j + 1] = pk[i][j];
toHash[3 * j + 2] = L;
toHash[3 * j + 3] = R;
}
for (j = dsRows, ii = 0; j < rows; j++, ii++) {
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
toHash[ndsRows + 2 * ii + 1] = pk[i][j];
toHash[ndsRows + 2 * ii + 2] = L;
}
c = hash_to_scalar(toHash);
copy(c_old, c);
i = (i + 1) % cols;
if (i == 0) {
copy(rv.cc, c_old);
}
}
for (j = 0; j < rows; j++) {
sc_mulsub(rv.ss[index][j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes);
}
return rv;
}
//Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
//This is a just slghtly more efficient version than the ones described below
//(will be explained in more detail in Ring Multisig paper
//These are aka MG signatutes in earlier drafts of the ring ct paper
// c.f. http://eprint.iacr.org/2015/1098 section 2.
// keyImageV just does I[i] = xx[i] * Hash(xx[i] * G) for each i
// Gen creates a signature which proves that for some column in the keymatrix "pk"
// the signer knows a secret key for each row in that column
// Ver verifies that the MG sig was created correctly
bool MLSAG_Ver(key message, const keyM & pk, const mgSig & rv, size_t dsRows) {
size_t cols = pk.size();
CHECK_AND_ASSERT_MES(cols >= 2, false, "Error! What is c if cols = 1!");
size_t rows = pk[0].size();
CHECK_AND_ASSERT_MES(rows >= 1, false, "Empty pk");
for (size_t i = 1; i < cols; ++i) {
CHECK_AND_ASSERT_MES(pk[i].size() == rows, false, "pk is not rectangular");
}
CHECK_AND_ASSERT_MES(rv.II.size() == dsRows, false, "Bad II size");
CHECK_AND_ASSERT_MES(rv.ss.size() == cols, false, "Bad rv.ss size");
for (size_t i = 0; i < cols; ++i) {
CHECK_AND_ASSERT_MES(rv.ss[i].size() == rows, false, "rv.ss is not rectangular");
}
CHECK_AND_ASSERT_MES(dsRows <= rows, false, "Bad dsRows value");
size_t i = 0, j = 0, ii = 0;
key c, L, R, Hi;
key c_old = copy(rv.cc);
vector<geDsmp> Ip(dsRows);
for (i = 0 ; i < dsRows ; i++) {
precomp(Ip[i].k, rv.II[i]);
}
size_t ndsRows = 3 * dsRows; //non Double Spendable Rows (see identity chains paper
keyV toHash(1 + 3 * dsRows + 2 * (rows - dsRows));
toHash[0] = message;
i = 0;
while (i < cols) {
sc_0(c.bytes);
for (j = 0; j < dsRows; j++) {
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
hashToPoint(Hi, pk[i][j]);
addKeys3(R, rv.ss[i][j], Hi, c_old, Ip[j].k);
toHash[3 * j + 1] = pk[i][j];
toHash[3 * j + 2] = L;
toHash[3 * j + 3] = R;
}
for (j = dsRows, ii = 0 ; j < rows ; j++, ii++) {
addKeys2(L, rv.ss[i][j], c_old, pk[i][j]);
toHash[ndsRows + 2 * ii + 1] = pk[i][j];
toHash[ndsRows + 2 * ii + 2] = L;
}
c = hash_to_scalar(toHash);
copy(c_old, c);
i = (i + 1);
}
sc_sub(c.bytes, c_old.bytes, rv.cc.bytes);
return sc_isnonzero(c.bytes) == 0;
}
//proveRange and verRange
//proveRange gives C, and mask such that \sumCi = C
// c.f. http://eprint.iacr.org/2015/1098 section 5.1
// and Ci is a commitment to either 0 or 2^i, i=0,...,63
// thus this proves that "amount" is in [0, 2^64]
// mask is a such that C = aG + bH, and b = amount
//verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
rangeSig proveRange(key & C, key & mask, const xmr_amount & amount) {
sc_0(mask.bytes);
identity(C);
bits b;
d2b(b, amount);
rangeSig sig;
key64 ai;
key64 CiH;
int i = 0;
for (i = 0; i < ATOMS; i++) {
skGen(ai[i]);
if (b[i] == 0) {
scalarmultBase(sig.Ci[i], ai[i]);
}
if (b[i] == 1) {
addKeys1(sig.Ci[i], ai[i], H2[i]);
}
subKeys(CiH[i], sig.Ci[i], H2[i]);
sc_add(mask.bytes, mask.bytes, ai[i].bytes);
addKeys(C, C, sig.Ci[i]);
}
sig.asig = GenASNL(ai, sig.Ci, CiH, b);
return sig;
}
//proveRange and verRange
//proveRange gives C, and mask such that \sumCi = C
// c.f. http://eprint.iacr.org/2015/1098 section 5.1
// and Ci is a commitment to either 0 or 2^i, i=0,...,63
// thus this proves that "amount" is in [0, 2^64]
// mask is a such that C = aG + bH, and b = amount
//verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
bool verRange(const key & C, const rangeSig & as) {
key64 CiH;
int i = 0;
key Ctmp = identity();
for (i = 0; i < 64; i++) {
subKeys(CiH[i], as.Ci[i], H2[i]);
addKeys(Ctmp, Ctmp, as.Ci[i]);
}
bool reb = equalKeys(C, Ctmp);
bool rab = VerASNL(as.Ci, CiH, as.asig);
return (reb && rab);
}
key get_pre_mlsag_hash(const rctSig &rv)
{
keyV kv;
kv.push_back(d2h(rv.type));
kv.push_back(rv.message);
for (auto r: rv.rangeSigs)
{
for (size_t n = 0; n < 64; ++n)
kv.push_back(r.asig.L1[n]);
for (size_t n = 0; n < 64; ++n)
kv.push_back(r.asig.s2[n]);
kv.push_back(r.asig.s);
for (size_t n = 0; n < 64; ++n)
kv.push_back(r.Ci[n]);
}
// no MG/MGs, that's what will sign all this
// no mixRing, it's part of the vin already
for (auto o: rv.pseudoOuts)
{
kv.push_back(o);
}
for (auto i: rv.ecdhInfo)
{
kv.push_back(i.mask);
kv.push_back(i.amount);
// no senderPk, unused here
}
for (auto o: rv.outPk)
{
kv.push_back(o.dest);
kv.push_back(o.mask);
}
kv.push_back(d2h(rv.txnFee));
return cn_fast_hash(kv);
}
//Ring-ct MG sigs
//Prove:
// c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10.
// This does the MG sig on the "dest" part of the given key matrix, and
// the last row is the sum of input commitments from that column - sum output commitments
// this shows that sum inputs = sum outputs
//Ver:
// verifies the above sig is created corretly
mgSig proveRctMG(const key &message, const ctkeyM & pubs, const ctkeyV & inSk, const ctkeyV &outSk, const ctkeyV & outPk, unsigned int index, key txnFeeKey) {
mgSig mg;
//setup vars
size_t cols = pubs.size();
CHECK_AND_ASSERT_THROW_MES(cols >= 1, "Empty pubs");
size_t rows = pubs[0].size();
CHECK_AND_ASSERT_THROW_MES(rows >= 1, "Empty pubs");
for (size_t i = 1; i < cols; ++i) {
CHECK_AND_ASSERT_THROW_MES(pubs[i].size() == rows, "pubs is not rectangular");
}
CHECK_AND_ASSERT_THROW_MES(inSk.size() == rows, "Bad inSk size");
CHECK_AND_ASSERT_THROW_MES(outSk.size() == outPk.size(), "Bad outSk/outPk size");
keyV sk(rows + 1);
keyV tmp(rows + 1);
size_t i = 0, j = 0;
for (i = 0; i < rows + 1; i++) {
sc_0(sk[i].bytes);
identity(tmp[i]);
}
keyM M(cols, tmp);
//create the matrix to mg sig
for (i = 0; i < cols; i++) {
M[i][rows] = identity();
for (j = 0; j < rows; j++) {
M[i][j] = pubs[i][j].dest;
addKeys(M[i][rows], M[i][rows], pubs[i][j].mask); //add input commitments in last row
}
}
sc_0(sk[rows].bytes);
for (j = 0; j < rows; j++) {
sk[j] = copy(inSk[j].dest);
sc_add(sk[rows].bytes, sk[rows].bytes, inSk[j].mask.bytes); //add masks in last row
}
for (i = 0; i < cols; i++) {
for (size_t j = 0; j < outPk.size(); j++) {
subKeys(M[i][rows], M[i][rows], outPk[j].mask); //subtract output Ci's in last row
}
//subtract txn fee output in last row
subKeys(M[i][rows], M[i][rows], txnFeeKey);
}
for (size_t j = 0; j < outPk.size(); j++) {
sc_sub(sk[rows].bytes, sk[rows].bytes, outSk[j].mask.bytes); //subtract output masks in last row..
}
return MLSAG_Gen(message, M, sk, index, rows);
}
//Ring-ct MG sigs Simple
// Simple version for when we assume only
// post rct inputs
// here pubs is a vector of (P, C) length mixin
// inSk is x, a_in corresponding to signing index
// a_out, Cout is for the output commitment
// index is the signing index..
mgSig proveRctMGSimple(const key &message, const ctkeyV & pubs, const ctkey & inSk, const key &a , const key &Cout, unsigned int index) {
mgSig mg;
//setup vars
size_t rows = 1;
size_t cols = pubs.size();
CHECK_AND_ASSERT_THROW_MES(cols >= 1, "Empty pubs");
keyV tmp(rows + 1);
keyV sk(rows + 1);
size_t i;
keyM M(cols, tmp);
for (i = 0; i < cols; i++) {
M[i][0] = pubs[i].dest;
subKeys(M[i][1], pubs[i].mask, Cout);
sk[0] = copy(inSk.dest);
sc_sub(sk[1].bytes, inSk.mask.bytes, a.bytes);
}
return MLSAG_Gen(message, M, sk, index, rows);
}
//Ring-ct MG sigs
//Prove:
// c.f. http://eprint.iacr.org/2015/1098 section 4. definition 10.
// This does the MG sig on the "dest" part of the given key matrix, and
// the last row is the sum of input commitments from that column - sum output commitments
// this shows that sum inputs = sum outputs
//Ver:
// verifies the above sig is created corretly
bool verRctMG(mgSig mg, const ctkeyM & pubs, const ctkeyV & outPk, key txnFeeKey, const key &message) {
//setup vars
size_t cols = pubs.size();
CHECK_AND_ASSERT_MES(cols >= 1, false, "Empty pubs");
size_t rows = pubs[0].size();
CHECK_AND_ASSERT_MES(rows >= 1, false, "Empty pubs");
for (size_t i = 1; i < cols; ++i) {
CHECK_AND_ASSERT_MES(pubs[i].size() == rows, false, "pubs is not rectangular");
}
keyV tmp(rows + 1);
size_t i = 0, j = 0;
for (i = 0; i < rows + 1; i++) {
identity(tmp[i]);
}
keyM M(cols, tmp);
//create the matrix to mg sig
for (j = 0; j < rows; j++) {
for (i = 0; i < cols; i++) {
M[i][j] = pubs[i][j].dest;
addKeys(M[i][rows], M[i][rows], pubs[i][j].mask); //add Ci in last row
}
}
for (i = 0; i < cols; i++) {
for (j = 0; j < outPk.size(); j++) {
subKeys(M[i][rows], M[i][rows], outPk[j].mask); //subtract output Ci's in last row
}
//subtract txn fee output in last row
subKeys(M[i][rows], M[i][rows], txnFeeKey);
}
return MLSAG_Ver(message, M, mg, rows);
}
//Ring-ct Simple MG sigs
//Ver:
//This does a simplified version, assuming only post Rct
//inputs
bool verRctMGSimple(const key &message, const mgSig &mg, const ctkeyV & pubs, const key & C) {
//setup vars
size_t rows = 1;
size_t cols = pubs.size();
CHECK_AND_ASSERT_MES(cols >= 1, false, "Empty pubs");
keyV tmp(rows + 1);
size_t i;
keyM M(cols, tmp);
//create the matrix to mg sig
for (i = 0; i < cols; i++) {
M[i][0] = pubs[i].dest;
subKeys(M[i][1], pubs[i].mask, C);
}
//DP(C);
return MLSAG_Ver(message, M, mg, rows);
}
//These functions get keys from blockchain
//replace these when connecting blockchain
//getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
//populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
// the return value are the key matrix, and the index where inPk was put (random).
void getKeyFromBlockchain(ctkey & a, size_t reference_index) {
a.mask = pkGen();
a.dest = pkGen();
}
//These functions get keys from blockchain
//replace these when connecting blockchain
//getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
//populateFromBlockchain creates a keymatrix with "mixin" + 1 columns and one of the columns is inPk
// the return value are the key matrix, and the index where inPk was put (random).
tuple<ctkeyM, xmr_amount> populateFromBlockchain(ctkeyV inPk, int mixin) {
int rows = inPk.size();
ctkeyM rv(mixin + 1, inPk);
int index = randXmrAmount(mixin);
int i = 0, j = 0;
for (i = 0; i <= mixin; i++) {
if (i != index) {
for (j = 0; j < rows; j++) {
getKeyFromBlockchain(rv[i][j], (size_t)randXmrAmount);
}
}
}
return make_tuple(rv, index);
}
//These functions get keys from blockchain
//replace these when connecting blockchain
//getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
//populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
// the return value are the key matrix, and the index where inPk was put (random).
xmr_amount populateFromBlockchainSimple(ctkeyV & mixRing, const ctkey & inPk, int mixin) {
int index = randXmrAmount(mixin);
int i = 0;
for (i = 0; i <= mixin; i++) {
if (i != index) {
getKeyFromBlockchain(mixRing[i], (size_t)randXmrAmount(1000));
} else {
mixRing[i] = inPk;
}
}
return index;
}
//RingCT protocol
//genRct:
// creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
// columns that are claimed as inputs, and that the sum of inputs = sum of outputs.
// Also contains masked "amount" and "mask" so the receiver can see how much they received
//verRct:
// verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
//decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
// uses the attached ecdh info to find the amounts represented by each output commitment
// must know the destination private key to find the correct amount, else will return a random number
// Note: For txn fees, the last index in the amounts vector should contain that
// Thus the amounts vector will be "one" longer than the destinations vectort
rctSig genRct(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> & amounts, const ctkeyM &mixRing, const keyV &amount_keys, unsigned int index, ctkeyV &outSk) {
CHECK_AND_ASSERT_THROW_MES(amounts.size() == destinations.size() || amounts.size() == destinations.size() + 1, "Different number of amounts/destinations");
CHECK_AND_ASSERT_THROW_MES(index < mixRing.size(), "Bad index into mixRing");
for (size_t n = 0; n < mixRing.size(); ++n) {
CHECK_AND_ASSERT_THROW_MES(mixRing[n].size() == inSk.size(), "Bad mixRing size");
}
rctSig rv;
rv.type = RCTTypeFull;
rv.outPk.resize(destinations.size());
rv.rangeSigs.resize(destinations.size());
rv.ecdhInfo.resize(destinations.size());
size_t i = 0;
keyV masks(destinations.size()); //sk mask..
outSk.resize(destinations.size());
for (i = 0; i < destinations.size(); i++) {
//add destination to sig
rv.outPk[i].dest = copy(destinations[i]);
//compute range proof
rv.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, amounts[i]);
#ifdef DBG
CHECK_AND_ASSERT_THROW_MES(verRange(rv.outPk[i].mask, rv.rangeSigs[i]), "verRange failed on newly created proof");
#endif
//mask amount and mask
rv.ecdhInfo[i].mask = copy(outSk[i].mask);
rv.ecdhInfo[i].amount = d2h(amounts[i]);
ecdhEncodeFromSharedSecret(rv.ecdhInfo[i], amount_keys[i]);
}
//set txn fee
if (amounts.size() > destinations.size())
{
rv.txnFee = amounts[destinations.size()];
}
else
{
rv.txnFee = 0;
}
key txnFeeKey = scalarmultH(d2h(rv.txnFee));
rv.mixRing = mixRing;
rv.MG = proveRctMG(get_pre_mlsag_hash(rv), rv.mixRing, inSk, outSk, rv.outPk, index, txnFeeKey);
return rv;
}
rctSig genRct(const key &message, const ctkeyV & inSk, const ctkeyV & inPk, const keyV & destinations, const vector<xmr_amount> & amounts, const keyV &amount_keys, const int mixin) {
unsigned int index;
ctkeyM mixRing;
ctkeyV outSk;
tie(mixRing, index) = populateFromBlockchain(inPk, mixin);
return genRct(message, inSk, destinations, amounts, mixRing, amount_keys, index, outSk);
}
//RCT simple
//for post-rct only
rctSig genRctSimple(const key &message, const ctkeyV & inSk, const keyV & destinations, const vector<xmr_amount> &inamounts, const vector<xmr_amount> &outamounts, xmr_amount txnFee, const ctkeyM & mixRing, const keyV &amount_keys, const std::vector<unsigned int> & index, ctkeyV &outSk) {
CHECK_AND_ASSERT_THROW_MES(inamounts.size() > 0, "Empty inamounts");
CHECK_AND_ASSERT_THROW_MES(inamounts.size() == inSk.size(), "Different number of inamounts/inSk");
CHECK_AND_ASSERT_THROW_MES(outamounts.size() == destinations.size(), "Different number of amounts/destinations");
CHECK_AND_ASSERT_THROW_MES(index.size() == inSk.size(), "Different number of index/inSk");
CHECK_AND_ASSERT_THROW_MES(mixRing.size() == inSk.size(), "Different number of mixRing/inSk");
for (size_t n = 0; n < mixRing.size(); ++n) {
CHECK_AND_ASSERT_THROW_MES(index[n] < mixRing[n].size(), "Bad index into mixRing");
}
rctSig rv;
rv.type = RCTTypeSimple;
rv.outPk.resize(destinations.size());
rv.rangeSigs.resize(destinations.size());
rv.ecdhInfo.resize(destinations.size());
size_t i;
keyV masks(destinations.size()); //sk mask..
outSk.resize(destinations.size());
key sumout = zero();
for (i = 0; i < destinations.size(); i++) {
//add destination to sig
rv.outPk[i].dest = copy(destinations[i]);
//compute range proof
rv.rangeSigs[i] = proveRange(rv.outPk[i].mask, outSk[i].mask, outamounts[i]);
#ifdef DBG
verRange(rv.outPk[i].mask, rv.rangeSigs[i]);
#endif
sc_add(sumout.bytes, outSk[i].mask.bytes, sumout.bytes);
//mask amount and mask
rv.ecdhInfo[i].mask = copy(outSk[i].mask);
rv.ecdhInfo[i].amount = d2h(outamounts[i]);
ecdhEncodeFromSharedSecret(rv.ecdhInfo[i], amount_keys[i]);
}
//set txn fee
rv.txnFee = txnFee;
// TODO: unused ??
// key txnFeeKey = scalarmultH(d2h(rv.txnFee));
rv.mixRing = mixRing;
rv.pseudoOuts.resize(inamounts.size());
rv.MGs.resize(inamounts.size());
key sumpouts = zero(); //sum pseudoOut masks
keyV a(inamounts.size());
for (i = 0 ; i < inamounts.size() - 1; i++) {
skGen(a[i]);
sc_add(sumpouts.bytes, a[i].bytes, sumpouts.bytes);
genC(rv.pseudoOuts[i], a[i], inamounts[i]);
}
rv.mixRing = mixRing;
sc_sub(a[i].bytes, sumout.bytes, sumpouts.bytes);
genC(rv.pseudoOuts[i], a[i], inamounts[i]);
DP(rv.pseudoOuts[i]);
key full_message = get_pre_mlsag_hash(rv);
for (i = 0 ; i < inamounts.size(); i++) {
rv.MGs[i] = proveRctMGSimple(full_message, rv.mixRing[i], inSk[i], a[i], rv.pseudoOuts[i], index[i]);
}
return rv;
}
rctSig genRctSimple(const key &message, const ctkeyV & inSk, const ctkeyV & inPk, const keyV & destinations, const vector<xmr_amount> &inamounts, const vector<xmr_amount> &outamounts, const keyV &amount_keys, xmr_amount txnFee, unsigned int mixin) {
std::vector<unsigned int> index;
index.resize(inPk.size());
ctkeyM mixRing;
ctkeyV outSk;
mixRing.resize(inPk.size());
for (size_t i = 0; i < inPk.size(); ++i) {
mixRing[i].resize(mixin+1);
index[i] = populateFromBlockchainSimple(mixRing[i], inPk[i], mixin);
}
return genRctSimple(message, inSk, destinations, inamounts, outamounts, txnFee, mixRing, amount_keys, index, outSk);
}
//RingCT protocol
//genRct:
// creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
// columns that are claimed as inputs, and that the sum of inputs = sum of outputs.
// Also contains masked "amount" and "mask" so the receiver can see how much they received
//verRct:
// verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
//decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
// uses the attached ecdh info to find the amounts represented by each output commitment
// must know the destination private key to find the correct amount, else will return a random number
bool verRct(const rctSig & rv) {
CHECK_AND_ASSERT_MES(rv.type == RCTTypeFull, false, "verRct called on non-full rctSig");
CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.rangeSigs.size(), false, "Mismatched sizes of outPk and rv.rangeSigs");
CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.ecdhInfo.size(), false, "Mismatched sizes of outPk and rv.ecdhInfo");
// some rct ops can throw
try
{
size_t i = 0;
bool rvb = true;
bool tmp;
DP("range proofs verified?");
for (i = 0; i < rv.outPk.size(); i++) {
tmp = verRange(rv.outPk[i].mask, rv.rangeSigs[i]);
DP(tmp);
rvb = (rvb && tmp);
}
//compute txn fee
key txnFeeKey = scalarmultH(d2h(rv.txnFee));
bool mgVerd = verRctMG(rv.MG, rv.mixRing, rv.outPk, txnFeeKey, get_pre_mlsag_hash(rv));
DP("mg sig verified?");
DP(mgVerd);
return (rvb && mgVerd);
}
catch(...)
{
return false;
}
}
//ver RingCT simple
//assumes only post-rct style inputs (at least for max anonymity)
bool verRctSimple(const rctSig & rv) {
size_t i = 0;
bool rvb = true;
CHECK_AND_ASSERT_MES(rv.type == RCTTypeSimple, false, "verRctSimple called on non simple rctSig");
CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.rangeSigs.size(), false, "Mismatched sizes of outPk and rv.rangeSigs");
CHECK_AND_ASSERT_MES(rv.outPk.size() == rv.ecdhInfo.size(), false, "Mismatched sizes of outPk and rv.ecdhInfo");
CHECK_AND_ASSERT_MES(rv.pseudoOuts.size() == rv.MGs.size(), false, "Mismatched sizes of rv.pseudoOuts and rv.MGs");
CHECK_AND_ASSERT_MES(rv.pseudoOuts.size() == rv.mixRing.size(), false, "Mismatched sizes of rv.pseudoOuts and mixRing");
key sumOutpks = identity();
for (i = 0; i < rv.outPk.size(); i++) {
if (!verRange(rv.outPk[i].mask, rv.rangeSigs[i])) {
return false;
}
addKeys(sumOutpks, sumOutpks, rv.outPk[i].mask);
}
DP(sumOutpks);
key txnFeeKey = scalarmultH(d2h(rv.txnFee));
addKeys(sumOutpks, txnFeeKey, sumOutpks);
bool tmpb = false;
key message = get_pre_mlsag_hash(rv);
key sumPseudoOuts = identity();
for (i = 0 ; i < rv.mixRing.size() ; i++) {
tmpb = verRctMGSimple(message, rv.MGs[i], rv.mixRing[i], rv.pseudoOuts[i]);
addKeys(sumPseudoOuts, sumPseudoOuts, rv.pseudoOuts[i]);
DP(tmpb);
if (!tmpb) {
return false;
}
}
DP(sumPseudoOuts);
bool mgVerd = true;
//check pseudoOuts vs Outs..
if (!equalKeys(sumPseudoOuts, sumOutpks)) {
return false;
}
DP("mg sig verified?");
DP(mgVerd);
return (rvb && mgVerd);
}
//RingCT protocol
//genRct:
// creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
// columns that are claimed as inputs, and that the sum of inputs = sum of outputs.
// Also contains masked "amount" and "mask" so the receiver can see how much they received
//verRct:
// verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
//decodeRct: (c.f. http://eprint.iacr.org/2015/1098 section 5.1.1)
// uses the attached ecdh info to find the amounts represented by each output commitment
// must know the destination private key to find the correct amount, else will return a random number
static xmr_amount decodeRctMain(const rctSig & rv, const key & sk, unsigned int i, key & mask, void (*decode)(ecdhTuple&, const key&)) {
CHECK_AND_ASSERT_MES(rv.type == RCTTypeFull, false, "decodeRct called on non-full rctSig");
CHECK_AND_ASSERT_THROW_MES(rv.rangeSigs.size() > 0, "Empty rv.rangeSigs");
CHECK_AND_ASSERT_THROW_MES(rv.outPk.size() == rv.rangeSigs.size(), "Mismatched sizes of rv.outPk and rv.rangeSigs");
CHECK_AND_ASSERT_THROW_MES(i < rv.ecdhInfo.size(), "Bad index");
//mask amount and mask
ecdhTuple ecdh_info = rv.ecdhInfo[i];
(*decode)(ecdh_info, sk);
mask = ecdh_info.mask;
key amount = ecdh_info.amount;
key C = rv.outPk[i].mask;
DP("C");
DP(C);
key Ctmp;
addKeys2(Ctmp, mask, amount, H);
DP("Ctmp");
DP(Ctmp);
if (equalKeys(C, Ctmp) == false) {
CHECK_AND_ASSERT_THROW_MES(false, "warning, amount decoded incorrectly, will be unable to spend");
}
return h2d(amount);
}
xmr_amount decodeRct(const rctSig & rv, const key & sk, unsigned int i, key & mask) {
return decodeRctMain(rv, sk, i, mask, &ecdhDecode);
}
xmr_amount decodeRctFromSharedSecret(const rctSig & rv, const key & sk, unsigned int i, key & mask) {
return decodeRctMain(rv, sk, i, mask, &ecdhDecodeFromSharedSecret);
}
xmr_amount decodeRct(const rctSig & rv, const key & sk, unsigned int i) {
key mask;
return decodeRct(rv, sk, i, mask);
}
static xmr_amount decodeRctSimpleMain(const rctSig & rv, const key & sk, unsigned int i, key &mask, void (*decode)(ecdhTuple &ecdh, const key&)) {
CHECK_AND_ASSERT_MES(rv.type == RCTTypeSimple, false, "decodeRct called on non simple rctSig");
CHECK_AND_ASSERT_THROW_MES(rv.rangeSigs.size() > 0, "Empty rv.rangeSigs");
CHECK_AND_ASSERT_THROW_MES(rv.outPk.size() == rv.rangeSigs.size(), "Mismatched sizes of rv.outPk and rv.rangeSigs");
CHECK_AND_ASSERT_THROW_MES(i < rv.ecdhInfo.size(), "Bad index");
//mask amount and mask
ecdhTuple ecdh_info = rv.ecdhInfo[i];
(*decode)(ecdh_info, sk);
mask = ecdh_info.mask;
key amount = ecdh_info.amount;
key C = rv.outPk[i].mask;
DP("C");
DP(C);
key Ctmp;
addKeys2(Ctmp, mask, amount, H);
DP("Ctmp");
DP(Ctmp);
if (equalKeys(C, Ctmp) == false) {
CHECK_AND_ASSERT_THROW_MES(false, "warning, amount decoded incorrectly, will be unable to spend");
}
return h2d(amount);
}
xmr_amount decodeRctSimple(const rctSig & rv, const key & sk, unsigned int i, key &mask) {
return decodeRctSimpleMain(rv, sk, i, mask, &ecdhDecode);
}
xmr_amount decodeRctSimpleFromSharedSecret(const rctSig & rv, const key & sk, unsigned int i, key &mask) {
return decodeRctSimpleMain(rv, sk, i, mask, &ecdhDecodeFromSharedSecret);
}
xmr_amount decodeRctSimple(const rctSig & rv, const key & sk, unsigned int i) {
key mask;
return decodeRctSimple(rv, sk, i, mask);
}
}