mirror of
https://git.wownero.com/wownero/wownero.git
synced 2024-12-31 23:18:52 +00:00
1271 lines
42 KiB
C++
1271 lines
42 KiB
C++
// Copyright (c) 2014-2022, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include <cstdint>
|
|
#include <algorithm>
|
|
#include <sstream>
|
|
|
|
#include "ringct/rctTypes.h"
|
|
#include "ringct/rctSigs.h"
|
|
#include "ringct/rctOps.h"
|
|
#include "device/device.hpp"
|
|
#include "string_tools.h"
|
|
|
|
using namespace std;
|
|
using namespace crypto;
|
|
using namespace rct;
|
|
|
|
TEST(ringct, Borromean)
|
|
{
|
|
int j = 0;
|
|
|
|
//Tests for Borromean signatures
|
|
//#boro true one, false one, C != sum Ci, and one out of the range..
|
|
int N = 64;
|
|
key64 xv;
|
|
key64 P1v;
|
|
key64 P2v;
|
|
bits indi;
|
|
|
|
for (j = 0 ; j < N ; j++) {
|
|
indi[j] = (int)randXmrAmount(2);
|
|
|
|
xv[j] = skGen();
|
|
if ( (int)indi[j] == 0 ) {
|
|
scalarmultBase(P1v[j], xv[j]);
|
|
} else {
|
|
addKeys1(P1v[j], xv[j], H2[j]);
|
|
}
|
|
subKeys(P2v[j], P1v[j], H2[j]);
|
|
}
|
|
|
|
//#true one
|
|
boroSig bb = genBorromean(xv, P1v, P2v, indi);
|
|
ASSERT_TRUE(verifyBorromean(bb, P1v, P2v));
|
|
|
|
//#false one
|
|
indi[3] = (indi[3] + 1) % 2;
|
|
bb = genBorromean(xv, P1v, P2v, indi);
|
|
ASSERT_FALSE(verifyBorromean(bb, P1v, P2v));
|
|
|
|
//#true one again
|
|
indi[3] = (indi[3] + 1) % 2;
|
|
bb = genBorromean(xv, P1v, P2v, indi);
|
|
ASSERT_TRUE(verifyBorromean(bb, P1v, P2v));
|
|
|
|
//#false one
|
|
bb = genBorromean(xv, P2v, P1v, indi);
|
|
ASSERT_FALSE(verifyBorromean(bb, P1v, P2v));
|
|
}
|
|
|
|
TEST(ringct, MG_sigs)
|
|
{
|
|
int j = 0;
|
|
int N = 0;
|
|
|
|
//Tests for MG Sigs
|
|
//#MG sig: true one
|
|
N = 3;// #cols
|
|
int R = 3;// #rows
|
|
keyV xtmp = skvGen(R);
|
|
keyM xm = keyMInit(R, N);// = [[None]*N] #just used to generate test public keys
|
|
keyV sk = skvGen(R);
|
|
keyM P = keyMInit(R, N);// = keyM[[None]*N] #stores the public keys;
|
|
int ind = 2;
|
|
int i = 0;
|
|
for (j = 0 ; j < R ; j++) {
|
|
for (i = 0 ; i < N ; i++)
|
|
{
|
|
xm[i][j] = skGen();
|
|
P[i][j] = scalarmultBase(xm[i][j]);
|
|
}
|
|
}
|
|
for (j = 0 ; j < R ; j++) {
|
|
sk[j] = xm[ind][j];
|
|
}
|
|
key message = identity();
|
|
mgSig IIccss = MLSAG_Gen(message, P, sk, ind, R, hw::get_device("default"));
|
|
ASSERT_TRUE(MLSAG_Ver(message, P, IIccss, R));
|
|
|
|
//#MG sig: false one
|
|
N = 3;// #cols
|
|
R = 3;// #rows
|
|
xtmp = skvGen(R);
|
|
keyM xx(N, xtmp);// = [[None]*N] #just used to generate test public keys
|
|
sk = skvGen(R);
|
|
//P (N, xtmp);// = keyM[[None]*N] #stores the public keys;
|
|
|
|
ind = 2;
|
|
for (j = 0 ; j < R ; j++) {
|
|
for (i = 0 ; i < N ; i++)
|
|
{
|
|
xx[i][j] = skGen();
|
|
P[i][j] = scalarmultBase(xx[i][j]);
|
|
}
|
|
sk[j] = xx[ind][j];
|
|
}
|
|
sk[2] = skGen();//assume we don't know one of the private keys..
|
|
IIccss = MLSAG_Gen(message, P, sk, ind, R, hw::get_device("default"));
|
|
ASSERT_FALSE(MLSAG_Ver(message, P, IIccss, R));
|
|
}
|
|
|
|
TEST(ringct, CLSAG)
|
|
{
|
|
const size_t N = 11;
|
|
const size_t idx = 5;
|
|
ctkeyV pubs;
|
|
key p, t, t2, u;
|
|
const key message = identity();
|
|
ctkey backup;
|
|
clsag clsag;
|
|
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
key sk;
|
|
ctkey tmp;
|
|
|
|
skpkGen(sk, tmp.dest);
|
|
skpkGen(sk, tmp.mask);
|
|
|
|
pubs.push_back(tmp);
|
|
}
|
|
|
|
// Set P[idx]
|
|
skpkGen(p, pubs[idx].dest);
|
|
|
|
// Set C[idx]
|
|
t = skGen();
|
|
u = skGen();
|
|
addKeys2(pubs[idx].mask,t,u,H);
|
|
|
|
// Set commitment offset
|
|
key Cout;
|
|
t2 = skGen();
|
|
addKeys2(Cout,t2,u,H);
|
|
|
|
// Prepare generation inputs
|
|
ctkey insk;
|
|
insk.dest = p;
|
|
insk.mask = t;
|
|
|
|
// bad message
|
|
clsag = rct::proveRctCLSAGSimple(zero(),pubs,insk,t2,Cout,idx,hw::get_device("default"));
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
|
|
// bad index at creation
|
|
try
|
|
{
|
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,(idx + 1) % N,hw::get_device("default"));
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
}
|
|
catch (...) { /* either exception, or failure to verify above */ }
|
|
|
|
// bad z at creation
|
|
try
|
|
{
|
|
ctkey insk2;
|
|
insk2.dest = insk.dest;
|
|
insk2.mask = skGen();
|
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk2,t2,Cout,idx,hw::get_device("default"));
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
}
|
|
catch (...) { /* either exception, or failure to verify above */ }
|
|
|
|
// bad C at creation
|
|
backup = pubs[idx];
|
|
pubs[idx].mask = scalarmultBase(skGen());
|
|
try
|
|
{
|
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,idx,hw::get_device("default"));
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
}
|
|
catch (...) { /* either exception, or failure to verify above */ }
|
|
pubs[idx] = backup;
|
|
|
|
// bad p at creation
|
|
try
|
|
{
|
|
ctkey insk2;
|
|
insk2.dest = skGen();
|
|
insk2.mask = insk.mask;
|
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk2,t2,Cout,idx,hw::get_device("default"));
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
}
|
|
catch (...) { /* either exception, or failure to verify above */ }
|
|
|
|
// bad P at creation
|
|
backup = pubs[idx];
|
|
pubs[idx].dest = scalarmultBase(skGen());
|
|
try
|
|
{
|
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,idx,hw::get_device("default"));
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
}
|
|
catch (...) { /* either exception, or failure to verify above */ }
|
|
pubs[idx] = backup;
|
|
|
|
// Test correct signature
|
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,idx,hw::get_device("default"));
|
|
ASSERT_TRUE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
|
|
// empty s
|
|
auto sbackup = clsag.s;
|
|
clsag.s.clear();
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
clsag.s = sbackup;
|
|
|
|
// too few s elements
|
|
key backup_key;
|
|
backup_key = clsag.s.back();
|
|
clsag.s.pop_back();
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
clsag.s.push_back(backup_key);
|
|
|
|
// too many s elements
|
|
clsag.s.push_back(skGen());
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
clsag.s.pop_back();
|
|
|
|
// bad s in clsag at verification
|
|
for (auto &s: clsag.s)
|
|
{
|
|
backup_key = s;
|
|
s = skGen();
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
s = backup_key;
|
|
}
|
|
|
|
// bad c1 in clsag at verification
|
|
backup_key = clsag.c1;
|
|
clsag.c1 = skGen();
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
clsag.c1 = backup_key;
|
|
|
|
// bad I in clsag at verification
|
|
backup_key = clsag.I;
|
|
clsag.I = scalarmultBase(skGen());
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
clsag.I = backup_key;
|
|
|
|
// bad D in clsag at verification
|
|
backup_key = clsag.D;
|
|
clsag.D = scalarmultBase(skGen());
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
clsag.D = backup_key;
|
|
|
|
// D not in main subgroup in clsag at verification
|
|
backup_key = clsag.D;
|
|
rct::key x;
|
|
ASSERT_TRUE(epee::string_tools::hex_to_pod("c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa", x));
|
|
clsag.D = rct::addKeys(clsag.D, x);
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
clsag.D = backup_key;
|
|
|
|
// swapped I and D in clsag at verification
|
|
std::swap(clsag.I, clsag.D);
|
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
std::swap(clsag.I, clsag.D);
|
|
|
|
// check it's still good, in case we failed to restore
|
|
ASSERT_TRUE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
|
}
|
|
|
|
TEST(ringct, range_proofs)
|
|
{
|
|
//Ring CT Stuff
|
|
//ct range proofs
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
std::vector<uint64_t> inamounts;
|
|
//add fake input 6000
|
|
inamounts.push_back(6000);
|
|
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
|
|
|
|
inamounts.push_back(7000);
|
|
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
vector<xmr_amount >amounts;
|
|
rct::keyV amount_keys;
|
|
key mask;
|
|
|
|
//add output 500
|
|
amounts.push_back(500);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
keyV destinations;
|
|
key Sk, Pk;
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
|
|
//add output for 12500
|
|
amounts.push_back(12500);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
|
|
|
|
//compute rct data with mixin 3 - should fail since full type with > 1 input
|
|
bool ok = false;
|
|
try { genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3, rct_config, hw::get_device("default")); }
|
|
catch(...) { ok = true; }
|
|
ASSERT_TRUE(ok);
|
|
|
|
//compute rct data with mixin 3
|
|
rctSig s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, 0, 3, rct_config, hw::get_device("default"));
|
|
|
|
//verify rct data
|
|
ASSERT_TRUE(verRctSimple(s));
|
|
|
|
//decode received amount
|
|
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
|
|
|
|
// Ring CT with failing MG sig part should not verify!
|
|
// Since sum of inputs != outputs
|
|
|
|
amounts[1] = 12501;
|
|
skpkGen(Sk, Pk);
|
|
destinations[1] = Pk;
|
|
|
|
|
|
//compute rct data with mixin 3
|
|
s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, 0, 3, rct_config, hw::get_device("default"));
|
|
|
|
//verify rct data
|
|
ASSERT_FALSE(verRctSimple(s));
|
|
|
|
//decode received amount
|
|
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_with_fee)
|
|
{
|
|
//Ring CT Stuff
|
|
//ct range proofs
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
std::vector<uint64_t> inamounts;
|
|
//add fake input 6001
|
|
inamounts.push_back(6001);
|
|
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
|
|
|
|
inamounts.push_back(7000);
|
|
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
vector<xmr_amount >amounts;
|
|
keyV amount_keys;
|
|
key mask;
|
|
|
|
//add output 500
|
|
amounts.push_back(500);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
keyV destinations;
|
|
key Sk, Pk;
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
//add output for 12500
|
|
amounts.push_back(12500);
|
|
amount_keys.push_back(hash_to_scalar(zero()));
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
|
|
|
|
//compute rct data with mixin 3
|
|
rctSig s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, 1, 3, rct_config, hw::get_device("default"));
|
|
|
|
//verify rct data
|
|
ASSERT_TRUE(verRctSimple(s));
|
|
|
|
//decode received amount
|
|
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
|
|
|
|
// Ring CT with failing MG sig part should not verify!
|
|
// Since sum of inputs != outputs
|
|
|
|
amounts[1] = 12501;
|
|
skpkGen(Sk, Pk);
|
|
destinations[1] = Pk;
|
|
|
|
|
|
//compute rct data with mixin 3
|
|
s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, 500, 3, rct_config, hw::get_device("default"));
|
|
|
|
//verify rct data
|
|
ASSERT_FALSE(verRctSimple(s));
|
|
|
|
//decode received amount
|
|
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
|
|
}
|
|
|
|
TEST(ringct, simple)
|
|
{
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
//this vector corresponds to output amounts
|
|
vector<xmr_amount>outamounts;
|
|
//this vector corresponds to input amounts
|
|
vector<xmr_amount>inamounts;
|
|
//this keyV corresponds to destination pubkeys
|
|
keyV destinations;
|
|
keyV amount_keys;
|
|
key mask;
|
|
|
|
//add fake input 3000
|
|
//the sc is secret data
|
|
//pc is public data
|
|
tie(sctmp, pctmp) = ctskpkGen(3000);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
inamounts.push_back(3000);
|
|
|
|
//add fake input 3000
|
|
//the sc is secret data
|
|
//pc is public data
|
|
tie(sctmp, pctmp) = ctskpkGen(3000);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
inamounts.push_back(3000);
|
|
|
|
//add output 5000
|
|
outamounts.push_back(5000);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
//add the corresponding destination pubkey
|
|
key Sk, Pk;
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
//add output 999
|
|
outamounts.push_back(999);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
//add the corresponding destination pubkey
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
key message = skGen(); //real message later (hash of txn..)
|
|
|
|
//compute sig with mixin 2
|
|
xmr_amount txnfee = 1;
|
|
|
|
const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
|
|
rctSig s = genRctSimple(message, sc, pc, destinations,inamounts, outamounts, amount_keys, txnfee, 2, rct_config, hw::get_device("default"));
|
|
|
|
//verify ring ct signature
|
|
ASSERT_TRUE(verRctSimple(s));
|
|
|
|
//decode received amount corresponding to output pubkey index 1
|
|
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
|
|
}
|
|
|
|
static rct::rctSig make_sample_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee)
|
|
{
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
vector<xmr_amount >amounts;
|
|
keyV destinations;
|
|
keyV amount_keys;
|
|
key Sk, Pk;
|
|
|
|
for (int n = 0; n < n_inputs; ++n) {
|
|
tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
}
|
|
|
|
for (int n = 0; n < n_outputs; ++n) {
|
|
amounts.push_back(output_amounts[n]);
|
|
skpkGen(Sk, Pk);
|
|
if (n < n_outputs - 1 || !last_is_fee)
|
|
{
|
|
destinations.push_back(Pk);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
}
|
|
}
|
|
|
|
const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
|
|
return genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, 3, rct_config, hw::get_device("default"));
|
|
}
|
|
|
|
static rct::rctSig make_sample_simple_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], uint64_t fee)
|
|
{
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
vector<xmr_amount> inamounts, outamounts;
|
|
keyV destinations;
|
|
keyV amount_keys;
|
|
key Sk, Pk;
|
|
|
|
for (int n = 0; n < n_inputs; ++n) {
|
|
inamounts.push_back(input_amounts[n]);
|
|
tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
}
|
|
|
|
for (int n = 0; n < n_outputs; ++n) {
|
|
outamounts.push_back(output_amounts[n]);
|
|
amount_keys.push_back(hash_to_scalar(zero()));
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
}
|
|
|
|
const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
|
|
return genRctSimple(rct::zero(), sc, pc, destinations, inamounts, outamounts, amount_keys, fee, 3, rct_config, hw::get_device("default"));
|
|
}
|
|
|
|
static bool range_proof_test(bool expected_valid,
|
|
int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee, bool simple)
|
|
{
|
|
//compute rct data
|
|
bool valid;
|
|
try {
|
|
rctSig s;
|
|
// simple takes fee as a parameter, non-simple takes it as an extra element to output amounts
|
|
if (simple) {
|
|
s = make_sample_simple_rct_sig(n_inputs, input_amounts, last_is_fee ? n_outputs - 1 : n_outputs, output_amounts, last_is_fee ? output_amounts[n_outputs - 1] : 0);
|
|
valid = verRctSimple(s);
|
|
}
|
|
else {
|
|
s = make_sample_rct_sig(n_inputs, input_amounts, n_outputs, output_amounts, last_is_fee);
|
|
valid = verRct(s);
|
|
}
|
|
}
|
|
catch (const std::exception &e) {
|
|
valid = false;
|
|
}
|
|
|
|
if (valid == expected_valid) {
|
|
return testing::AssertionSuccess();
|
|
}
|
|
else {
|
|
return testing::AssertionFailure();
|
|
}
|
|
}
|
|
|
|
#define NELTS(array) (sizeof(array)/sizeof(array[0]))
|
|
|
|
TEST(ringct, range_proofs_reject_empty_outs)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_outs_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_ins)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_ins_simple)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_all_empty)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_all_empty_simple)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_empty)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_empty_simple)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_zero)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_zero_simple)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_zero)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_zero_simple)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_first)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {0, 5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_first_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {0, 5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_last)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5000, 0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_last_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5000, 0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_middle)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {2500, 0, 2500};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_middle_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {2500, 0, 2500};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_first_simple)
|
|
{
|
|
const uint64_t inputs[] = {0, 5000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_last_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000, 0};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_middle_simple)
|
|
{
|
|
const uint64_t inputs[] = {2500, 0, 2500};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_lower)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_lower_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_higher)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5001};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_higher_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5001};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_out_negative)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {(uint64_t)-1000ll};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_out_negative_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {(uint64_t)-1000ll};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_first)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {(uint64_t)-1000ll, 6000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_first_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {(uint64_t)-1000ll, 6000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_last)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {6000, (uint64_t)-1000ll};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_last_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {6000, (uint64_t)-1000ll};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_middle)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_middle_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_in_negative)
|
|
{
|
|
const uint64_t inputs[] = {(uint64_t)-1000ll};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_in_negative_simple)
|
|
{
|
|
const uint64_t inputs[] = {(uint64_t)-1000ll};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_first)
|
|
{
|
|
const uint64_t inputs[] = {(uint64_t)-1000ll, 6000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_first_simple)
|
|
{
|
|
const uint64_t inputs[] = {(uint64_t)-1000ll, 6000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_last)
|
|
{
|
|
const uint64_t inputs[] = {6000, (uint64_t)-1000ll};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_last_simple)
|
|
{
|
|
const uint64_t inputs[] = {6000, (uint64_t)-1000ll};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_middle)
|
|
{
|
|
const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_middle_simple)
|
|
{
|
|
const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_higher_list)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_higher_list_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_1_to_1)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_1_to_1_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_1_to_N)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_1_to_N_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false,true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_N_to_1_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_N_to_N_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_very_long_simple)
|
|
{
|
|
const size_t N=12;
|
|
uint64_t inputs[N];
|
|
uint64_t outputs[N];
|
|
for (size_t n = 0; n < N; ++n) {
|
|
inputs[n] = n;
|
|
outputs[n] = n;
|
|
}
|
|
std::shuffle(inputs, inputs + N, crypto::random_device{});
|
|
std::shuffle(outputs, outputs + N, crypto::random_device{});
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, HPow2)
|
|
{
|
|
key G = scalarmultBase(d2h(1));
|
|
|
|
// Note that H is computed differently than standard hashing
|
|
// This method is not guaranteed to return a curvepoint for all inputs
|
|
// Don't use it elsewhere
|
|
key H = cn_fast_hash(G);
|
|
ge_p3 H_p3;
|
|
int decode = ge_frombytes_vartime(&H_p3, H.bytes);
|
|
ASSERT_EQ(decode, 0); // this is known to pass for the particular value G
|
|
ge_p2 H_p2;
|
|
ge_p3_to_p2(&H_p2, &H_p3);
|
|
ge_p1p1 H8_p1p1;
|
|
ge_mul8(&H8_p1p1, &H_p2);
|
|
ge_p1p1_to_p3(&H_p3, &H8_p1p1);
|
|
ge_p3_tobytes(H.bytes, &H_p3);
|
|
|
|
for (int j = 0 ; j < ATOMS ; j++) {
|
|
ASSERT_TRUE(equalKeys(H, H2[j]));
|
|
addKeys(H, H, H);
|
|
}
|
|
}
|
|
|
|
static const xmr_amount test_amounts[]={0, 1, 2, 3, 4, 5, 10000, 10000000000000000000ull, 10203040506070809000ull, 123456789123456789};
|
|
|
|
TEST(ringct, d2h)
|
|
{
|
|
key k, P1;
|
|
skpkGen(k, P1);
|
|
for (auto amount: test_amounts) {
|
|
d2h(k, amount);
|
|
ASSERT_TRUE(amount == h2d(k));
|
|
}
|
|
}
|
|
|
|
TEST(ringct, d2b)
|
|
{
|
|
for (auto amount: test_amounts) {
|
|
bits b;
|
|
d2b(b, amount);
|
|
ASSERT_TRUE(amount == b2d(b));
|
|
}
|
|
}
|
|
|
|
TEST(ringct, prooveRange_is_non_deterministic)
|
|
{
|
|
key C[2], mask[2];
|
|
for (int n = 0; n < 2; ++n)
|
|
proveRange(C[n], mask[n], 80);
|
|
ASSERT_TRUE(memcmp(C[0].bytes, C[1].bytes, sizeof(C[0].bytes)));
|
|
ASSERT_TRUE(memcmp(mask[0].bytes, mask[1].bytes, sizeof(mask[0].bytes)));
|
|
}
|
|
|
|
TEST(ringct, fee_0_valid)
|
|
{
|
|
const uint64_t inputs[] = {2000};
|
|
const uint64_t outputs[] = {2000, 0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_0_valid_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {2000, 0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_valid)
|
|
{
|
|
const uint64_t inputs[] = {2000};
|
|
const uint64_t outputs[] = {1900, 100};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_valid_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1900, 100};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_invalid_higher)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1990, 100};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_invalid_higher_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1990, 100};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_invalid_lower)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1000, 100};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_invalid_lower_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1000, 100};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
TEST(ringct, fee_burn_valid_one_out)
|
|
{
|
|
const uint64_t inputs[] = {2000};
|
|
const uint64_t outputs[] = {0, 2000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_burn_valid_one_out_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {0, 2000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
TEST(ringct, fee_burn_valid_zero_out)
|
|
{
|
|
const uint64_t inputs[] = {2000};
|
|
const uint64_t outputs[] = {2000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_burn_valid_zero_out_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {2000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
static rctSig make_sig()
|
|
{
|
|
static const uint64_t inputs[] = {2000};
|
|
static const uint64_t outputs[] = {1000, 1000};
|
|
static rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true);
|
|
return sig;
|
|
}
|
|
|
|
#define TEST_rctSig_elements(name, op) \
|
|
TEST(ringct, rctSig_##name) \
|
|
{ \
|
|
rct::rctSig sig = make_sig(); \
|
|
ASSERT_TRUE(rct::verRct(sig)); \
|
|
op; \
|
|
ASSERT_FALSE(rct::verRct(sig)); \
|
|
}
|
|
|
|
TEST_rctSig_elements(rangeSigs_empty, sig.p.rangeSigs.resize(0));
|
|
TEST_rctSig_elements(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back()));
|
|
TEST_rctSig_elements(rangeSigs_too_few, sig.p.rangeSigs.pop_back());
|
|
TEST_rctSig_elements(mgSig_MG_empty, sig.p.MGs.resize(0));
|
|
TEST_rctSig_elements(mgSig_ss_empty, sig.p.MGs[0].ss.resize(0));
|
|
TEST_rctSig_elements(mgSig_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back()));
|
|
TEST_rctSig_elements(mgSig_ss_too_few, sig.p.MGs[0].ss.pop_back());
|
|
TEST_rctSig_elements(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0));
|
|
TEST_rctSig_elements(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back()));
|
|
TEST_rctSig_elements(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back());
|
|
TEST_rctSig_elements(mgSig_II_empty, sig.p.MGs[0].II.resize(0));
|
|
TEST_rctSig_elements(mgSig_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back()));
|
|
TEST_rctSig_elements(mgSig_II_too_few, sig.p.MGs[0].II.pop_back());
|
|
TEST_rctSig_elements(mixRing_empty, sig.mixRing.resize(0));
|
|
TEST_rctSig_elements(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back()));
|
|
TEST_rctSig_elements(mixRing_too_few, sig.mixRing.pop_back());
|
|
TEST_rctSig_elements(mixRing0_empty, sig.mixRing[0].resize(0));
|
|
TEST_rctSig_elements(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back()));
|
|
TEST_rctSig_elements(mixRing0_too_few, sig.mixRing[0].pop_back());
|
|
TEST_rctSig_elements(ecdhInfo_empty, sig.ecdhInfo.resize(0));
|
|
TEST_rctSig_elements(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back()));
|
|
TEST_rctSig_elements(ecdhInfo_too_few, sig.ecdhInfo.pop_back());
|
|
TEST_rctSig_elements(outPk_empty, sig.outPk.resize(0));
|
|
TEST_rctSig_elements(outPk_too_many, sig.outPk.push_back(sig.outPk.back()));
|
|
TEST_rctSig_elements(outPk_too_few, sig.outPk.pop_back());
|
|
|
|
static rct::rctSig make_sig_simple()
|
|
{
|
|
static const uint64_t inputs[] = {1000, 1000};
|
|
static const uint64_t outputs[] = {1000};
|
|
static rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000);
|
|
return sig;
|
|
}
|
|
|
|
#define TEST_rctSig_elements_simple(name, op) \
|
|
TEST(ringct, rctSig_##name##_simple) \
|
|
{ \
|
|
rct::rctSig sig = make_sig_simple(); \
|
|
ASSERT_TRUE(rct::verRctSimple(sig)); \
|
|
op; \
|
|
ASSERT_FALSE(rct::verRctSimple(sig)); \
|
|
}
|
|
|
|
TEST_rctSig_elements_simple(rangeSigs_empty, sig.p.rangeSigs.resize(0));
|
|
TEST_rctSig_elements_simple(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back()));
|
|
TEST_rctSig_elements_simple(rangeSigs_too_few, sig.p.rangeSigs.pop_back());
|
|
TEST_rctSig_elements_simple(mgSig_empty, sig.p.MGs.resize(0));
|
|
TEST_rctSig_elements_simple(mgSig_too_many, sig.p.MGs.push_back(sig.p.MGs.back()));
|
|
TEST_rctSig_elements_simple(mgSig_too_few, sig.p.MGs.pop_back());
|
|
TEST_rctSig_elements_simple(mgSig0_ss_empty, sig.p.MGs[0].ss.resize(0));
|
|
TEST_rctSig_elements_simple(mgSig0_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back()));
|
|
TEST_rctSig_elements_simple(mgSig0_ss_too_few, sig.p.MGs[0].ss.pop_back());
|
|
TEST_rctSig_elements_simple(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0));
|
|
TEST_rctSig_elements_simple(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back()));
|
|
TEST_rctSig_elements_simple(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back());
|
|
TEST_rctSig_elements_simple(mgSig0_II_empty, sig.p.MGs[0].II.resize(0));
|
|
TEST_rctSig_elements_simple(mgSig0_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back()));
|
|
TEST_rctSig_elements_simple(mgSig0_II_too_few, sig.p.MGs[0].II.pop_back());
|
|
TEST_rctSig_elements_simple(mixRing_empty, sig.mixRing.resize(0));
|
|
TEST_rctSig_elements_simple(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back()));
|
|
TEST_rctSig_elements_simple(mixRing_too_few, sig.mixRing.pop_back());
|
|
TEST_rctSig_elements_simple(mixRing0_empty, sig.mixRing[0].resize(0));
|
|
TEST_rctSig_elements_simple(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back()));
|
|
TEST_rctSig_elements_simple(mixRing0_too_few, sig.mixRing[0].pop_back());
|
|
TEST_rctSig_elements_simple(pseudoOuts_empty, sig.pseudoOuts.resize(0));
|
|
TEST_rctSig_elements_simple(pseudoOuts_too_many, sig.pseudoOuts.push_back(sig.pseudoOuts.back()));
|
|
TEST_rctSig_elements_simple(pseudoOuts_too_few, sig.pseudoOuts.pop_back());
|
|
TEST_rctSig_elements_simple(ecdhInfo_empty, sig.ecdhInfo.resize(0));
|
|
TEST_rctSig_elements_simple(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back()));
|
|
TEST_rctSig_elements_simple(ecdhInfo_too_few, sig.ecdhInfo.pop_back());
|
|
TEST_rctSig_elements_simple(outPk_empty, sig.outPk.resize(0));
|
|
TEST_rctSig_elements_simple(outPk_too_many, sig.outPk.push_back(sig.outPk.back()));
|
|
TEST_rctSig_elements_simple(outPk_too_few, sig.outPk.pop_back());
|
|
|
|
TEST(ringct, reject_gen_simple_ver_non_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1000};
|
|
rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000);
|
|
ASSERT_FALSE(rct::verRct(sig));
|
|
}
|
|
|
|
TEST(ringct, reject_gen_non_simple_ver_simple)
|
|
{
|
|
const uint64_t inputs[] = {2000};
|
|
const uint64_t outputs[] = {1000, 1000};
|
|
rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true);
|
|
ASSERT_FALSE(rct::verRctSimple(sig));
|
|
}
|
|
|
|
TEST(ringct, key_ostream)
|
|
{
|
|
std::stringstream out;
|
|
out << "BEGIN" << rct::H << "END";
|
|
EXPECT_EQ(
|
|
std::string{"BEGIN<8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94>END"},
|
|
out.str()
|
|
);
|
|
}
|
|
|
|
TEST(ringct, zeroCommmit)
|
|
{
|
|
static const uint64_t amount = crypto::rand<uint64_t>();
|
|
const rct::key z = rct::zeroCommit(amount);
|
|
const rct::key a = rct::scalarmultBase(rct::identity());
|
|
const rct::key b = rct::scalarmultH(rct::d2h(amount));
|
|
const rct::key manual = rct::addKeys(a, b);
|
|
ASSERT_EQ(z, manual);
|
|
}
|
|
|
|
static rct::key uncachedZeroCommit(uint64_t amount)
|
|
{
|
|
const rct::key am = rct::d2h(amount);
|
|
const rct::key bH = rct::scalarmultH(am);
|
|
return rct::addKeys(rct::G, bH);
|
|
}
|
|
|
|
TEST(ringct, zeroCommitCache)
|
|
{
|
|
ASSERT_EQ(rct::zeroCommit(0), uncachedZeroCommit(0));
|
|
ASSERT_EQ(rct::zeroCommit(1), uncachedZeroCommit(1));
|
|
ASSERT_EQ(rct::zeroCommit(2), uncachedZeroCommit(2));
|
|
ASSERT_EQ(rct::zeroCommit(10), uncachedZeroCommit(10));
|
|
ASSERT_EQ(rct::zeroCommit(200), uncachedZeroCommit(200));
|
|
ASSERT_EQ(rct::zeroCommit(1000000000), uncachedZeroCommit(1000000000));
|
|
ASSERT_EQ(rct::zeroCommit(3000000000000), uncachedZeroCommit(3000000000000));
|
|
ASSERT_EQ(rct::zeroCommit(900000000000000), uncachedZeroCommit(900000000000000));
|
|
}
|
|
|
|
TEST(ringct, H)
|
|
{
|
|
ge_p3 p3;
|
|
ASSERT_EQ(ge_frombytes_vartime(&p3, rct::H.bytes), 0);
|
|
ASSERT_EQ(memcmp(&p3, &ge_p3_H, sizeof(ge_p3)), 0);
|
|
}
|
|
|
|
TEST(ringct, mul8)
|
|
{
|
|
ge_p3 p3;
|
|
rct::key key;
|
|
ASSERT_EQ(rct::scalarmult8(rct::identity()), rct::identity());
|
|
rct::scalarmult8(p3,rct::identity());
|
|
ge_p3_tobytes(key.bytes, &p3);
|
|
ASSERT_EQ(key, rct::identity());
|
|
ASSERT_EQ(rct::scalarmult8(rct::H), rct::scalarmultKey(rct::H, rct::EIGHT));
|
|
rct::scalarmult8(p3,rct::H);
|
|
ge_p3_tobytes(key.bytes, &p3);
|
|
ASSERT_EQ(key, rct::scalarmultKey(rct::H, rct::EIGHT));
|
|
ASSERT_EQ(rct::scalarmultKey(rct::scalarmultKey(rct::H, rct::INV_EIGHT), rct::EIGHT), rct::H);
|
|
}
|
|
|
|
TEST(ringct, aggregated)
|
|
{
|
|
static const size_t N_PROOFS = 16;
|
|
std::vector<rctSig> s(N_PROOFS);
|
|
std::vector<const rctSig*> sp(N_PROOFS);
|
|
|
|
for (size_t n = 0; n < N_PROOFS; ++n)
|
|
{
|
|
static const uint64_t inputs[] = {1000, 1000};
|
|
static const uint64_t outputs[] = {500, 1500};
|
|
s[n] = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 0);
|
|
sp[n] = &s[n];
|
|
}
|
|
|
|
ASSERT_TRUE(verRctSemanticsSimple(sp));
|
|
}
|