mirror of
https://git.wownero.com/wownero/wownero.git
synced 2025-02-09 05:58:33 +00:00
421 lines
16 KiB
C++
421 lines
16 KiB
C++
// Copyright (c) 2014-2020, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <vector>
|
|
#include <boost/math/special_functions/round.hpp>
|
|
|
|
#include "int-util.h"
|
|
#include "crypto/hash.h"
|
|
#include "cryptonote_config.h"
|
|
#include "difficulty.h"
|
|
|
|
#undef MONERO_DEFAULT_LOG_CATEGORY
|
|
#define MONERO_DEFAULT_LOG_CATEGORY "difficulty"
|
|
|
|
namespace cryptonote {
|
|
|
|
using std::size_t;
|
|
using std::uint64_t;
|
|
using std::vector;
|
|
|
|
#if defined(__x86_64__)
|
|
static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
|
|
low = mul128(a, b, &high);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
|
|
// __int128 isn't part of the standard, so the previous function wasn't portable. mul128() in Windows is fine,
|
|
// but this portable function should be used elsewhere. Credit for this function goes to latexi95.
|
|
|
|
uint64_t aLow = a & 0xFFFFFFFF;
|
|
uint64_t aHigh = a >> 32;
|
|
uint64_t bLow = b & 0xFFFFFFFF;
|
|
uint64_t bHigh = b >> 32;
|
|
|
|
uint64_t res = aLow * bLow;
|
|
uint64_t lowRes1 = res & 0xFFFFFFFF;
|
|
uint64_t carry = res >> 32;
|
|
|
|
res = aHigh * bLow + carry;
|
|
uint64_t highResHigh1 = res >> 32;
|
|
uint64_t highResLow1 = res & 0xFFFFFFFF;
|
|
|
|
res = aLow * bHigh;
|
|
uint64_t lowRes2 = res & 0xFFFFFFFF;
|
|
carry = res >> 32;
|
|
|
|
res = aHigh * bHigh + carry;
|
|
uint64_t highResHigh2 = res >> 32;
|
|
uint64_t highResLow2 = res & 0xFFFFFFFF;
|
|
|
|
//Addition
|
|
|
|
uint64_t r = highResLow1 + lowRes2;
|
|
carry = r >> 32;
|
|
low = (r << 32) | lowRes1;
|
|
r = highResHigh1 + highResLow2 + carry;
|
|
uint64_t d3 = r & 0xFFFFFFFF;
|
|
carry = r >> 32;
|
|
r = highResHigh2 + carry;
|
|
high = d3 | (r << 32);
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline bool cadd(uint64_t a, uint64_t b) {
|
|
return a + b < a;
|
|
}
|
|
|
|
static inline bool cadc(uint64_t a, uint64_t b, bool c) {
|
|
return a + b < a || (c && a + b == (uint64_t) -1);
|
|
}
|
|
|
|
bool check_hash_64(const crypto::hash &hash, uint64_t difficulty) {
|
|
uint64_t low, high, top, cur;
|
|
// First check the highest word, this will most likely fail for a random hash.
|
|
mul(swap64le(((const uint64_t *) &hash)[3]), difficulty, top, high);
|
|
if (high != 0) {
|
|
return false;
|
|
}
|
|
mul(swap64le(((const uint64_t *) &hash)[0]), difficulty, low, cur);
|
|
mul(swap64le(((const uint64_t *) &hash)[1]), difficulty, low, high);
|
|
bool carry = cadd(cur, low);
|
|
cur = high;
|
|
mul(swap64le(((const uint64_t *) &hash)[2]), difficulty, low, high);
|
|
carry = cadc(cur, low, carry);
|
|
carry = cadc(high, top, carry);
|
|
return !carry;
|
|
}
|
|
|
|
uint64_t next_difficulty_64(std::vector<std::uint64_t> timestamps, std::vector<uint64_t> cumulative_difficulties, size_t target_seconds) {
|
|
|
|
if(timestamps.size() > DIFFICULTY_WINDOW)
|
|
{
|
|
timestamps.resize(DIFFICULTY_WINDOW);
|
|
cumulative_difficulties.resize(DIFFICULTY_WINDOW);
|
|
}
|
|
|
|
|
|
size_t length = timestamps.size();
|
|
assert(length == cumulative_difficulties.size());
|
|
if (length <= 1) {
|
|
return 1;
|
|
}
|
|
static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
|
|
assert(length <= DIFFICULTY_WINDOW);
|
|
sort(timestamps.begin(), timestamps.end());
|
|
size_t cut_begin, cut_end;
|
|
static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
|
|
if (length <= DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) {
|
|
cut_begin = 0;
|
|
cut_end = length;
|
|
} else {
|
|
cut_begin = (length - (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) + 1) / 2;
|
|
cut_end = cut_begin + (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT);
|
|
}
|
|
assert(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length);
|
|
uint64_t time_span = timestamps[cut_end - 1] - timestamps[cut_begin];
|
|
if (time_span == 0) {
|
|
time_span = 1;
|
|
}
|
|
uint64_t total_work = cumulative_difficulties[cut_end - 1] - cumulative_difficulties[cut_begin];
|
|
assert(total_work > 0);
|
|
uint64_t low, high;
|
|
mul(total_work, target_seconds, low, high);
|
|
// blockchain errors "difficulty overhead" if this function returns zero.
|
|
// TODO: consider throwing an exception instead
|
|
if (high != 0 || low + time_span - 1 < low) {
|
|
return 0;
|
|
}
|
|
return (low + time_span - 1) / time_span;
|
|
}
|
|
|
|
#if defined(_MSC_VER)
|
|
#ifdef max
|
|
#undef max
|
|
#endif
|
|
#endif
|
|
|
|
const difficulty_type max64bit(std::numeric_limits<std::uint64_t>::max());
|
|
const boost::multiprecision::uint256_t max128bit(std::numeric_limits<boost::multiprecision::uint128_t>::max());
|
|
const boost::multiprecision::uint512_t max256bit(std::numeric_limits<boost::multiprecision::uint256_t>::max());
|
|
|
|
#define FORCE_FULL_128_BITS
|
|
|
|
bool check_hash_128(const crypto::hash &hash, difficulty_type difficulty) {
|
|
#ifndef FORCE_FULL_128_BITS
|
|
// fast check
|
|
if (difficulty >= max64bit && ((const uint64_t *) &hash)[3] > 0)
|
|
return false;
|
|
#endif
|
|
// usual slow check
|
|
boost::multiprecision::uint512_t hashVal = 0;
|
|
#ifdef FORCE_FULL_128_BITS
|
|
for(int i = 0; i < 4; i++) { // highest word is zero
|
|
#else
|
|
for(int i = 1; i < 4; i++) { // highest word is zero
|
|
#endif
|
|
hashVal <<= 64;
|
|
hashVal |= swap64le(((const uint64_t *) &hash)[3 - i]);
|
|
}
|
|
return hashVal * difficulty <= max256bit;
|
|
}
|
|
|
|
bool check_hash(const crypto::hash &hash, difficulty_type difficulty) {
|
|
if (difficulty <= max64bit) // if can convert to small difficulty - do it
|
|
return check_hash_64(hash, difficulty.convert_to<std::uint64_t>());
|
|
else
|
|
return check_hash_128(hash, difficulty);
|
|
}
|
|
|
|
difficulty_type next_difficulty(std::vector<uint64_t> timestamps, network_type m_nettype, std::vector<difficulty_type> cumulative_difficulties, size_t target_seconds, uint64_t HEIGHT) {
|
|
//cutoff DIFFICULTY_LAG
|
|
if(timestamps.size() > DIFFICULTY_WINDOW)
|
|
{
|
|
timestamps.resize(DIFFICULTY_WINDOW);
|
|
cumulative_difficulties.resize(DIFFICULTY_WINDOW);
|
|
}
|
|
|
|
|
|
size_t length = timestamps.size();
|
|
assert(length == cumulative_difficulties.size());
|
|
if (length <= 1) {
|
|
return 1;
|
|
}
|
|
if (HEIGHT < 200 && HEIGHT > 2 && m_nettype == TESTNET) { return 500; }
|
|
if (HEIGHT <= DIFFICULTY_RESET_HEIGHT + DIFFICULTY_WINDOW && HEIGHT >= DIFFICULTY_RESET_HEIGHT && m_nettype == MAINNET) { return DIFFICULTY_RESET_LEVEL; }
|
|
static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
|
|
assert(length <= DIFFICULTY_WINDOW);
|
|
sort(timestamps.begin(), timestamps.end());
|
|
size_t cut_begin, cut_end;
|
|
static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
|
|
if (length <= DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) {
|
|
cut_begin = 0;
|
|
cut_end = length;
|
|
} else {
|
|
cut_begin = (length - (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT) + 1) / 2;
|
|
cut_end = cut_begin + (DIFFICULTY_WINDOW - 2 * DIFFICULTY_CUT);
|
|
}
|
|
assert(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length);
|
|
uint64_t time_span = timestamps[cut_end - 1] - timestamps[cut_begin];
|
|
if (time_span == 0) {
|
|
time_span = 1;
|
|
}
|
|
difficulty_type total_work = cumulative_difficulties[cut_end - 1] - cumulative_difficulties[cut_begin];
|
|
assert(total_work > 0);
|
|
boost::multiprecision::uint256_t res = (boost::multiprecision::uint256_t(total_work) * target_seconds + time_span - 1) / time_span;
|
|
if(res > max128bit)
|
|
return 0; // to behave like previous implementation, may be better return max128bit?
|
|
return res.convert_to<difficulty_type>();
|
|
}
|
|
|
|
std::string hex(difficulty_type v)
|
|
{
|
|
static const char chars[] = "0123456789abcdef";
|
|
std::string s;
|
|
while (v > 0)
|
|
{
|
|
s.push_back(chars[(v & 0xf).convert_to<unsigned>()]);
|
|
v >>= 4;
|
|
}
|
|
if (s.empty())
|
|
s += "0";
|
|
std::reverse(s.begin(), s.end());
|
|
return "0x" + s;
|
|
}
|
|
|
|
// LWMA difficulty algorithm
|
|
// Background: https://github.com/zawy12/difficulty-algorithms/issues/3
|
|
// Copyright (c) 2017-2018 Zawy
|
|
difficulty_type next_difficulty_v2(std::vector<std::uint64_t> timestamps, network_type m_nettype, std::vector<difficulty_type> cumulative_difficulties, size_t target_seconds, uint64_t HEIGHT) {
|
|
|
|
const int64_t T = static_cast<int64_t>(target_seconds);
|
|
size_t N = DIFFICULTY_WINDOW_V2;
|
|
if (m_nettype == MAINNET) {
|
|
if (timestamps.size() < 4) {
|
|
return 1;
|
|
} else if ( timestamps.size() < N+1 ) {
|
|
N = timestamps.size() - 1;
|
|
} else {
|
|
timestamps.resize(N+1);
|
|
cumulative_difficulties.resize(N+1);
|
|
}
|
|
}
|
|
if (HEIGHT < 200 && m_nettype == TESTNET) { return 500; }
|
|
const double adjust = 0.998;
|
|
const double k = N * (N + 1) / 2;
|
|
double LWMA(0), sum_inverse_D(0), harmonic_mean_D(0), nextDifficulty(0);
|
|
int64_t solveTime(0);
|
|
uint64_t difficulty(0), next_difficulty(0);
|
|
for (size_t i = 1; i <= N; i++) {
|
|
solveTime = static_cast<int64_t>(timestamps[i]) - static_cast<int64_t>(timestamps[i - 1]);
|
|
solveTime = std::min<int64_t>((T * 7), std::max<int64_t>(solveTime, (-7 * T)));
|
|
difficulty = static_cast<uint64_t>(cumulative_difficulties[i] - cumulative_difficulties[i - 1]);
|
|
LWMA += (int64_t)(solveTime * i) / k;
|
|
sum_inverse_D += 1 / static_cast<double>(difficulty);
|
|
}
|
|
harmonic_mean_D = N / sum_inverse_D;
|
|
if (static_cast<int64_t>(boost::math::round(LWMA)) < T / 20)
|
|
LWMA = static_cast<double>(T / 20);
|
|
|
|
nextDifficulty = harmonic_mean_D * T / LWMA * adjust;
|
|
next_difficulty = static_cast<uint64_t>(nextDifficulty);
|
|
return next_difficulty;
|
|
}
|
|
|
|
// LWMA-2
|
|
difficulty_type next_difficulty_v3(std::vector<uint64_t> timestamps, network_type m_nettype, std::vector<difficulty_type> cumulative_difficulties, uint64_t HEIGHT) {
|
|
|
|
int64_t T = DIFFICULTY_TARGET_V2;
|
|
int64_t N = DIFFICULTY_WINDOW_V2;
|
|
int64_t L(0), ST, sum_3_ST(0), next_D, prev_D;
|
|
assert(timestamps.size() == cumulative_difficulties.size() && timestamps.size() <= static_cast<uint64_t>(N+1) );
|
|
if (HEIGHT < 200 && m_nettype == TESTNET) { return 500; }
|
|
for ( int64_t i = 1; i <= N; i++ ) {
|
|
ST = static_cast<int64_t>(timestamps[i]) - static_cast<int64_t>(timestamps[i-1]);
|
|
ST = std::max(-4*T, std::min(ST, 6*T));
|
|
L += ST * i ;
|
|
if ( i > N-3 ) {
|
|
sum_3_ST += ST;
|
|
}
|
|
}
|
|
next_D = (static_cast<int64_t>(cumulative_difficulties[N] - cumulative_difficulties[0])*T*(N+1)*99)/(100*2*L);
|
|
prev_D = static_cast<int64_t>(cumulative_difficulties[N] - cumulative_difficulties[N-1]);
|
|
next_D = std::max((prev_D*67)/100, std::min(next_D, (prev_D*150)/100));
|
|
if ( sum_3_ST < (8*T)/10) {
|
|
next_D = std::max(next_D,(prev_D*108)/100);
|
|
}
|
|
return static_cast<uint64_t>(next_D);
|
|
}
|
|
|
|
// LWMA-4
|
|
difficulty_type next_difficulty_v4(std::vector<uint64_t> timestamps, network_type m_nettype, std::vector<difficulty_type> cumulative_difficulties, uint64_t HEIGHT) {
|
|
|
|
uint64_t T = DIFFICULTY_TARGET_V2;
|
|
uint64_t N = DIFFICULTY_WINDOW_V2;
|
|
uint64_t L(0), ST(0), next_D, prev_D, avg_D, i;
|
|
assert(timestamps.size() == cumulative_difficulties.size() && timestamps.size() <= N+1 );
|
|
if (HEIGHT <= 63469 + 1 && m_nettype == MAINNET) { return 100000069; }
|
|
if (HEIGHT < 200 && m_nettype == TESTNET) { return 500; }
|
|
std::vector<uint64_t>TS(N+1);
|
|
TS[0] = timestamps[0];
|
|
for ( i = 1; i <= N; i++) {
|
|
if ( timestamps[i] > TS[i-1] ) { TS[i] = timestamps[i]; }
|
|
else { TS[i] = TS[i-1]; }
|
|
}
|
|
for ( i = 1; i <= N; i++) {
|
|
if ( i > 4 && TS[i]-TS[i-1] > 5*T && TS[i-1] - TS[i-4] < (14*T)/10 ) { ST = 2*T; }
|
|
else if ( i > 7 && TS[i]-TS[i-1] > 5*T && TS[i-1] - TS[i-7] < 4*T ) { ST = 2*T; }
|
|
else {
|
|
ST = std::min(5*T ,TS[i] - TS[i-1]);
|
|
}
|
|
L += ST * i ;
|
|
}
|
|
if (L < N*N*T/20 ) { L = N*N*T/20; }
|
|
avg_D = static_cast<uint64_t>(( cumulative_difficulties[N] - cumulative_difficulties[0] )/ N);
|
|
if (avg_D > 2000000*N*N*T) {
|
|
next_D = (avg_D/(200*L))*(N*(N+1)*T*97);
|
|
}
|
|
else { next_D = (avg_D*N*(N+1)*T*97)/(200*L); }
|
|
prev_D = static_cast<uint64_t>(cumulative_difficulties[N] - cumulative_difficulties[N-1]);
|
|
if ( ( TS[N] - TS[N-1] < (2*T)/10 ) ||
|
|
( TS[N] - TS[N-2] < (5*T)/10 ) ||
|
|
( TS[N] - TS[N-3] < (8*T)/10 ) )
|
|
{
|
|
next_D = std::max( next_D, std::min( (prev_D*110)/100, (105*avg_D)/100 ) );
|
|
}
|
|
i = 1000000000;
|
|
while (i > 1) {
|
|
if ( next_D > i*100 ) { next_D = ((next_D+i/2)/i)*i; break; }
|
|
else { i /= 10; }
|
|
}
|
|
if ( next_D > 100000 ) {
|
|
next_D = ((next_D+500)/1000)*1000 + std::min(static_cast<uint64_t>(999), (TS[N]-TS[N-10])/10);
|
|
}
|
|
return static_cast<uint64_t>(next_D);
|
|
}
|
|
|
|
// LWMA-1 difficulty algorithm
|
|
// Copyright (c) 2017-2019 Zawy, MIT License
|
|
// https://github.com/zawy12/difficulty-algorithms/issues/3
|
|
difficulty_type next_difficulty_v5(std::vector<std::uint64_t> timestamps, network_type m_nettype, std::vector<difficulty_type> cumulative_difficulties, uint64_t T, uint64_t N, uint64_t HEIGHT) {
|
|
assert(timestamps.size() == cumulative_difficulties.size() && timestamps.size() <= N+1 );
|
|
|
|
if (HEIGHT >= 81769 && HEIGHT < 81769 + N && m_nettype == MAINNET) { return 10000000; }
|
|
if (HEIGHT < 200 && m_nettype == TESTNET) { return 500; }
|
|
assert(timestamps.size() == N+1);
|
|
|
|
// hardcoding previously erroneously calculated difficulty entries
|
|
if(HEIGHT == 307686) return 25800000;
|
|
if(HEIGHT == 307692) return 1890000;
|
|
if(HEIGHT == 307735) return 17900000;
|
|
if(HEIGHT == 307742) return 21300000;
|
|
if(HEIGHT == 307750) return 10900000;
|
|
if(HEIGHT == 307766) return 2960000;
|
|
|
|
uint64_t i, this_timestamp(0), previous_timestamp(0);
|
|
difficulty_type L(0), next_D, avg_D;
|
|
|
|
previous_timestamp = timestamps[0]-T;
|
|
for ( i = 1; i <= N; i++) {
|
|
// Safely prevent out-of-sequence timestamps
|
|
if ( timestamps[i] > previous_timestamp ) { this_timestamp = timestamps[i]; }
|
|
else { this_timestamp = previous_timestamp+1; }
|
|
L += i*std::min(6*T ,this_timestamp - previous_timestamp);
|
|
previous_timestamp = this_timestamp;
|
|
}
|
|
if (L < N*N*T/20 ) { L = N*N*T/20; }
|
|
avg_D = ( cumulative_difficulties[N] - cumulative_difficulties[0] )/ N;
|
|
|
|
// Prevent round off error for small D and overflow for large D.
|
|
if (avg_D > 2000000*N*N*T && HEIGHT < 307800) {
|
|
next_D = (avg_D/(200*L))*(N*(N+1)*T*99);
|
|
}
|
|
else if (avg_D > uint64_t(-1)/(N*(N+1)*T*99) && HEIGHT > 307800) {
|
|
next_D = (avg_D/(200*L))*(N*(N+1)*T*99);
|
|
}
|
|
else { next_D = (avg_D*N*(N+1)*T*99)/(200*L); }
|
|
|
|
// Make all insignificant digits zero for easy reading.
|
|
i = 1000000000;
|
|
while (i > 1) {
|
|
if ( next_D > i*100 ) { next_D = ((next_D+i/2)/i)*i; break; }
|
|
else { i /= 10; }
|
|
}
|
|
return next_D;
|
|
}
|
|
}
|