2020-05-09 23:22:28 +03:00

69 lines
3.6 KiB
C++

// Copyright (c) 2014-2019, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#pragma once
#include <cstdint>
#include <vector>
#include <string>
#include <boost/multiprecision/cpp_int.hpp>
#include "crypto/hash.h"
namespace cryptonote
{
typedef boost::multiprecision::uint128_t difficulty_type;
/**
* @brief checks if a hash fits the given difficulty
*
* The hash passes if (hash * difficulty) < 2^256.
* Phrased differently, if (hash * difficulty) fits without overflow into
* the least significant 256 bits of the 320 bit multiplication result.
*
* @param hash the hash to check
* @param difficulty the difficulty to check against
*
* @return true if valid, else false
*/
bool check_hash_64(const crypto::hash &hash, uint64_t difficulty);
uint64_t next_difficulty_64(std::vector<std::uint64_t> timestamps, std::vector<uint64_t> cumulative_difficulties, size_t target_seconds);
bool check_hash_128(const crypto::hash &hash, difficulty_type difficulty);
bool check_hash(const crypto::hash &hash, difficulty_type difficulty);
difficulty_type next_difficulty(std::vector<std::uint64_t> timestamps, std::vector<difficulty_type> cumulative_difficulties, size_t target_seconds);
difficulty_type next_difficulty_v2(std::vector<std::uint64_t> timestamps, std::vector<difficulty_type> cumulative_difficulties, size_t target_seconds);
difficulty_type next_difficulty_v3(std::vector<std::uint64_t> timestamps, std::vector<difficulty_type> cumulative_difficulties);
difficulty_type next_difficulty_v4(std::vector<std::uint64_t> timestamps, std::vector<difficulty_type> cumulative_difficulties, size_t height);
difficulty_type next_difficulty_v5(std::vector<std::uint64_t> timestamps, std::vector<difficulty_type> cumulative_difficulties, uint64_t T, uint64_t N, uint64_t HEIGHT);
difficulty_type next_difficulty_test(std::vector<std::uint64_t> timestamps, std::vector<difficulty_type> cumulative_difficulties, uint64_t T, uint64_t N, uint64_t HEIGHT);
std::string hex(difficulty_type v);
}