wownero/external/unbound/util/netevent.c
2015-05-31 16:36:48 +02:00

2234 lines
58 KiB
C

/*
* util/netevent.c - event notification
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains event notification functions.
*/
#include "config.h"
#include "util/netevent.h"
#include "util/log.h"
#include "util/net_help.h"
#include "util/fptr_wlist.h"
#include "sldns/pkthdr.h"
#include "sldns/sbuffer.h"
#include "dnstap/dnstap.h"
#ifdef HAVE_OPENSSL_SSL_H
#include <openssl/ssl.h>
#endif
#ifdef HAVE_OPENSSL_ERR_H
#include <openssl/err.h>
#endif
/* -------- Start of local definitions -------- */
/** if CMSG_ALIGN is not defined on this platform, a workaround */
#ifndef CMSG_ALIGN
# ifdef _CMSG_DATA_ALIGN
# define CMSG_ALIGN _CMSG_DATA_ALIGN
# else
# define CMSG_ALIGN(len) (((len)+sizeof(long)-1) & ~(sizeof(long)-1))
# endif
#endif
/** if CMSG_LEN is not defined on this platform, a workaround */
#ifndef CMSG_LEN
# define CMSG_LEN(len) (CMSG_ALIGN(sizeof(struct cmsghdr))+(len))
#endif
/** if CMSG_SPACE is not defined on this platform, a workaround */
#ifndef CMSG_SPACE
# ifdef _CMSG_HDR_ALIGN
# define CMSG_SPACE(l) (CMSG_ALIGN(l)+_CMSG_HDR_ALIGN(sizeof(struct cmsghdr)))
# else
# define CMSG_SPACE(l) (CMSG_ALIGN(l)+CMSG_ALIGN(sizeof(struct cmsghdr)))
# endif
#endif
/** The TCP reading or writing query timeout in seconds */
#define TCP_QUERY_TIMEOUT 120
#ifndef NONBLOCKING_IS_BROKEN
/** number of UDP reads to perform per read indication from select */
#define NUM_UDP_PER_SELECT 100
#else
#define NUM_UDP_PER_SELECT 1
#endif
/* We define libevent structures here to hide the libevent stuff. */
#ifdef USE_MINI_EVENT
# ifdef USE_WINSOCK
# include "util/winsock_event.h"
# else
# include "util/mini_event.h"
# endif /* USE_WINSOCK */
#else /* USE_MINI_EVENT */
/* we use libevent */
# ifdef HAVE_EVENT_H
# include <event.h>
# else
# include "event2/event.h"
# include "event2/event_struct.h"
# include "event2/event_compat.h"
# endif
#endif /* USE_MINI_EVENT */
/**
* The internal event structure for keeping libevent info for the event.
* Possibly other structures (list, tree) this is part of.
*/
struct internal_event {
/** the comm base */
struct comm_base* base;
/** libevent event type, alloced here */
struct event ev;
};
/**
* Internal base structure, so that every thread has its own events.
*/
struct internal_base {
/** libevent event_base type. */
struct event_base* base;
/** seconds time pointer points here */
time_t secs;
/** timeval with current time */
struct timeval now;
/** the event used for slow_accept timeouts */
struct event slow_accept;
/** true if slow_accept is enabled */
int slow_accept_enabled;
};
/**
* Internal timer structure, to store timer event in.
*/
struct internal_timer {
/** the comm base */
struct comm_base* base;
/** libevent event type, alloced here */
struct event ev;
/** is timer enabled */
uint8_t enabled;
};
/**
* Internal signal structure, to store signal event in.
*/
struct internal_signal {
/** libevent event type, alloced here */
struct event ev;
/** next in signal list */
struct internal_signal* next;
};
/** create a tcp handler with a parent */
static struct comm_point* comm_point_create_tcp_handler(
struct comm_base *base, struct comm_point* parent, size_t bufsize,
comm_point_callback_t* callback, void* callback_arg);
/* -------- End of local definitions -------- */
#ifdef USE_MINI_EVENT
/** minievent updates the time when it blocks. */
#define comm_base_now(x) /* nothing to do */
#else /* !USE_MINI_EVENT */
/** fillup the time values in the event base */
static void
comm_base_now(struct comm_base* b)
{
if(gettimeofday(&b->eb->now, NULL) < 0) {
log_err("gettimeofday: %s", strerror(errno));
}
b->eb->secs = (time_t)b->eb->now.tv_sec;
}
#endif /* USE_MINI_EVENT */
struct comm_base*
comm_base_create(int sigs)
{
struct comm_base* b = (struct comm_base*)calloc(1,
sizeof(struct comm_base));
if(!b)
return NULL;
b->eb = (struct internal_base*)calloc(1, sizeof(struct internal_base));
if(!b->eb) {
free(b);
return NULL;
}
#ifdef USE_MINI_EVENT
(void)sigs;
/* use mini event time-sharing feature */
b->eb->base = event_init(&b->eb->secs, &b->eb->now);
#else
# if defined(HAVE_EV_LOOP) || defined(HAVE_EV_DEFAULT_LOOP)
/* libev */
if(sigs)
b->eb->base=(struct event_base *)ev_default_loop(EVFLAG_AUTO);
else
b->eb->base=(struct event_base *)ev_loop_new(EVFLAG_AUTO);
# else
(void)sigs;
# ifdef HAVE_EVENT_BASE_NEW
b->eb->base = event_base_new();
# else
b->eb->base = event_init();
# endif
# endif
#endif
if(!b->eb->base) {
free(b->eb);
free(b);
return NULL;
}
comm_base_now(b);
/* avoid event_get_method call which causes crashes even when
* not printing, because its result is passed */
verbose(VERB_ALGO,
#if defined(HAVE_EV_LOOP) || defined(HAVE_EV_DEFAULT_LOOP)
"libev"
#elif defined(USE_MINI_EVENT)
"event "
#else
"libevent "
#endif
"%s uses %s method.",
event_get_version(),
#ifdef HAVE_EVENT_BASE_GET_METHOD
event_base_get_method(b->eb->base)
#else
"not_obtainable"
#endif
);
return b;
}
struct comm_base*
comm_base_create_event(struct event_base* base)
{
struct comm_base* b = (struct comm_base*)calloc(1,
sizeof(struct comm_base));
if(!b)
return NULL;
b->eb = (struct internal_base*)calloc(1, sizeof(struct internal_base));
if(!b->eb) {
free(b);
return NULL;
}
b->eb->base = base;
comm_base_now(b);
return b;
}
void
comm_base_delete(struct comm_base* b)
{
if(!b)
return;
if(b->eb->slow_accept_enabled) {
if(event_del(&b->eb->slow_accept) != 0) {
log_err("could not event_del slow_accept");
}
}
#ifdef USE_MINI_EVENT
event_base_free(b->eb->base);
#elif defined(HAVE_EVENT_BASE_FREE) && defined(HAVE_EVENT_BASE_ONCE)
/* only libevent 1.2+ has it, but in 1.2 it is broken -
assertion fails on signal handling ev that is not deleted
in libevent 1.3c (event_base_once appears) this is fixed. */
event_base_free(b->eb->base);
#endif /* HAVE_EVENT_BASE_FREE and HAVE_EVENT_BASE_ONCE */
b->eb->base = NULL;
free(b->eb);
free(b);
}
void
comm_base_delete_no_base(struct comm_base* b)
{
if(!b)
return;
if(b->eb->slow_accept_enabled) {
if(event_del(&b->eb->slow_accept) != 0) {
log_err("could not event_del slow_accept");
}
}
b->eb->base = NULL;
free(b->eb);
free(b);
}
void
comm_base_timept(struct comm_base* b, time_t** tt, struct timeval** tv)
{
*tt = &b->eb->secs;
*tv = &b->eb->now;
}
void
comm_base_dispatch(struct comm_base* b)
{
int retval;
retval = event_base_dispatch(b->eb->base);
if(retval != 0) {
fatal_exit("event_dispatch returned error %d, "
"errno is %s", retval, strerror(errno));
}
}
void comm_base_exit(struct comm_base* b)
{
if(event_base_loopexit(b->eb->base, NULL) != 0) {
log_err("Could not loopexit");
}
}
void comm_base_set_slow_accept_handlers(struct comm_base* b,
void (*stop_acc)(void*), void (*start_acc)(void*), void* arg)
{
b->stop_accept = stop_acc;
b->start_accept = start_acc;
b->cb_arg = arg;
}
struct event_base* comm_base_internal(struct comm_base* b)
{
return b->eb->base;
}
/** see if errno for udp has to be logged or not uses globals */
static int
udp_send_errno_needs_log(struct sockaddr* addr, socklen_t addrlen)
{
/* do not log transient errors (unless high verbosity) */
#if defined(ENETUNREACH) || defined(EHOSTDOWN) || defined(EHOSTUNREACH) || defined(ENETDOWN)
switch(errno) {
# ifdef ENETUNREACH
case ENETUNREACH:
# endif
# ifdef EHOSTDOWN
case EHOSTDOWN:
# endif
# ifdef EHOSTUNREACH
case EHOSTUNREACH:
# endif
# ifdef ENETDOWN
case ENETDOWN:
# endif
if(verbosity < VERB_ALGO)
return 0;
default:
break;
}
#endif
/* permission denied is gotten for every send if the
* network is disconnected (on some OS), squelch it */
if(errno == EPERM && verbosity < VERB_DETAIL)
return 0;
/* squelch errors where people deploy AAAA ::ffff:bla for
* authority servers, which we try for intranets. */
if(errno == EINVAL && addr_is_ip4mapped(
(struct sockaddr_storage*)addr, addrlen) &&
verbosity < VERB_DETAIL)
return 0;
/* SO_BROADCAST sockopt can give access to 255.255.255.255,
* but a dns cache does not need it. */
if(errno == EACCES && addr_is_broadcast(
(struct sockaddr_storage*)addr, addrlen) &&
verbosity < VERB_DETAIL)
return 0;
return 1;
}
int tcp_connect_errno_needs_log(struct sockaddr* addr, socklen_t addrlen)
{
return udp_send_errno_needs_log(addr, addrlen);
}
/* send a UDP reply */
int
comm_point_send_udp_msg(struct comm_point *c, sldns_buffer* packet,
struct sockaddr* addr, socklen_t addrlen)
{
ssize_t sent;
log_assert(c->fd != -1);
#ifdef UNBOUND_DEBUG
if(sldns_buffer_remaining(packet) == 0)
log_err("error: send empty UDP packet");
#endif
log_assert(addr && addrlen > 0);
sent = sendto(c->fd, (void*)sldns_buffer_begin(packet),
sldns_buffer_remaining(packet), 0,
addr, addrlen);
if(sent == -1) {
if(!udp_send_errno_needs_log(addr, addrlen))
return 0;
#ifndef USE_WINSOCK
verbose(VERB_OPS, "sendto failed: %s", strerror(errno));
#else
verbose(VERB_OPS, "sendto failed: %s",
wsa_strerror(WSAGetLastError()));
#endif
log_addr(VERB_OPS, "remote address is",
(struct sockaddr_storage*)addr, addrlen);
return 0;
} else if((size_t)sent != sldns_buffer_remaining(packet)) {
log_err("sent %d in place of %d bytes",
(int)sent, (int)sldns_buffer_remaining(packet));
return 0;
}
return 1;
}
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && (defined(HAVE_RECVMSG) || defined(HAVE_SENDMSG))
/** print debug ancillary info */
static void p_ancil(const char* str, struct comm_reply* r)
{
if(r->srctype != 4 && r->srctype != 6) {
log_info("%s: unknown srctype %d", str, r->srctype);
return;
}
if(r->srctype == 6) {
char buf[1024];
if(inet_ntop(AF_INET6, &r->pktinfo.v6info.ipi6_addr,
buf, (socklen_t)sizeof(buf)) == 0) {
(void)strlcpy(buf, "(inet_ntop error)", sizeof(buf));
}
buf[sizeof(buf)-1]=0;
log_info("%s: %s %d", str, buf, r->pktinfo.v6info.ipi6_ifindex);
} else if(r->srctype == 4) {
#ifdef IP_PKTINFO
char buf1[1024], buf2[1024];
if(inet_ntop(AF_INET, &r->pktinfo.v4info.ipi_addr,
buf1, (socklen_t)sizeof(buf1)) == 0) {
(void)strlcpy(buf1, "(inet_ntop error)", sizeof(buf1));
}
buf1[sizeof(buf1)-1]=0;
#ifdef HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST
if(inet_ntop(AF_INET, &r->pktinfo.v4info.ipi_spec_dst,
buf2, (socklen_t)sizeof(buf2)) == 0) {
(void)strlcpy(buf2, "(inet_ntop error)", sizeof(buf2));
}
buf2[sizeof(buf2)-1]=0;
#else
buf2[0]=0;
#endif
log_info("%s: %d %s %s", str, r->pktinfo.v4info.ipi_ifindex,
buf1, buf2);
#elif defined(IP_RECVDSTADDR)
char buf1[1024];
if(inet_ntop(AF_INET, &r->pktinfo.v4addr,
buf1, (socklen_t)sizeof(buf1)) == 0) {
(void)strlcpy(buf1, "(inet_ntop error)", sizeof(buf1));
}
buf1[sizeof(buf1)-1]=0;
log_info("%s: %s", str, buf1);
#endif /* IP_PKTINFO or PI_RECVDSTDADDR */
}
}
#endif /* AF_INET6 && IPV6_PKTINFO && HAVE_RECVMSG||HAVE_SENDMSG */
/** send a UDP reply over specified interface*/
static int
comm_point_send_udp_msg_if(struct comm_point *c, sldns_buffer* packet,
struct sockaddr* addr, socklen_t addrlen, struct comm_reply* r)
{
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && defined(HAVE_SENDMSG)
ssize_t sent;
struct msghdr msg;
struct iovec iov[1];
char control[256];
#ifndef S_SPLINT_S
struct cmsghdr *cmsg;
#endif /* S_SPLINT_S */
log_assert(c->fd != -1);
#ifdef UNBOUND_DEBUG
if(sldns_buffer_remaining(packet) == 0)
log_err("error: send empty UDP packet");
#endif
log_assert(addr && addrlen > 0);
msg.msg_name = addr;
msg.msg_namelen = addrlen;
iov[0].iov_base = sldns_buffer_begin(packet);
iov[0].iov_len = sldns_buffer_remaining(packet);
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_control = control;
#ifndef S_SPLINT_S
msg.msg_controllen = sizeof(control);
#endif /* S_SPLINT_S */
msg.msg_flags = 0;
#ifndef S_SPLINT_S
cmsg = CMSG_FIRSTHDR(&msg);
if(r->srctype == 4) {
#ifdef IP_PKTINFO
void* cmsg_data;
msg.msg_controllen = CMSG_SPACE(sizeof(struct in_pktinfo));
log_assert(msg.msg_controllen <= sizeof(control));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_PKTINFO;
memmove(CMSG_DATA(cmsg), &r->pktinfo.v4info,
sizeof(struct in_pktinfo));
/* unset the ifindex to not bypass the routing tables */
cmsg_data = CMSG_DATA(cmsg);
((struct in_pktinfo *) cmsg_data)->ipi_ifindex = 0;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo));
#elif defined(IP_SENDSRCADDR)
msg.msg_controllen = CMSG_SPACE(sizeof(struct in_addr));
log_assert(msg.msg_controllen <= sizeof(control));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_SENDSRCADDR;
memmove(CMSG_DATA(cmsg), &r->pktinfo.v4addr,
sizeof(struct in_addr));
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_addr));
#else
verbose(VERB_ALGO, "no IP_PKTINFO or IP_SENDSRCADDR");
msg.msg_control = NULL;
#endif /* IP_PKTINFO or IP_SENDSRCADDR */
} else if(r->srctype == 6) {
void* cmsg_data;
msg.msg_controllen = CMSG_SPACE(sizeof(struct in6_pktinfo));
log_assert(msg.msg_controllen <= sizeof(control));
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
memmove(CMSG_DATA(cmsg), &r->pktinfo.v6info,
sizeof(struct in6_pktinfo));
/* unset the ifindex to not bypass the routing tables */
cmsg_data = CMSG_DATA(cmsg);
((struct in6_pktinfo *) cmsg_data)->ipi6_ifindex = 0;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));
} else {
/* try to pass all 0 to use default route */
msg.msg_controllen = CMSG_SPACE(sizeof(struct in6_pktinfo));
log_assert(msg.msg_controllen <= sizeof(control));
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
memset(CMSG_DATA(cmsg), 0, sizeof(struct in6_pktinfo));
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));
}
#endif /* S_SPLINT_S */
if(verbosity >= VERB_ALGO)
p_ancil("send_udp over interface", r);
sent = sendmsg(c->fd, &msg, 0);
if(sent == -1) {
if(!udp_send_errno_needs_log(addr, addrlen))
return 0;
verbose(VERB_OPS, "sendmsg failed: %s", strerror(errno));
log_addr(VERB_OPS, "remote address is",
(struct sockaddr_storage*)addr, addrlen);
return 0;
} else if((size_t)sent != sldns_buffer_remaining(packet)) {
log_err("sent %d in place of %d bytes",
(int)sent, (int)sldns_buffer_remaining(packet));
return 0;
}
return 1;
#else
(void)c;
(void)packet;
(void)addr;
(void)addrlen;
(void)r;
log_err("sendmsg: IPV6_PKTINFO not supported");
return 0;
#endif /* AF_INET6 && IPV6_PKTINFO && HAVE_SENDMSG */
}
void
comm_point_udp_ancil_callback(int fd, short event, void* arg)
{
#if defined(AF_INET6) && defined(IPV6_PKTINFO) && defined(HAVE_RECVMSG)
struct comm_reply rep;
struct msghdr msg;
struct iovec iov[1];
ssize_t rcv;
char ancil[256];
int i;
#ifndef S_SPLINT_S
struct cmsghdr* cmsg;
#endif /* S_SPLINT_S */
rep.c = (struct comm_point*)arg;
log_assert(rep.c->type == comm_udp);
if(!(event&EV_READ))
return;
log_assert(rep.c && rep.c->buffer && rep.c->fd == fd);
comm_base_now(rep.c->ev->base);
for(i=0; i<NUM_UDP_PER_SELECT; i++) {
sldns_buffer_clear(rep.c->buffer);
rep.addrlen = (socklen_t)sizeof(rep.addr);
log_assert(fd != -1);
log_assert(sldns_buffer_remaining(rep.c->buffer) > 0);
msg.msg_name = &rep.addr;
msg.msg_namelen = (socklen_t)sizeof(rep.addr);
iov[0].iov_base = sldns_buffer_begin(rep.c->buffer);
iov[0].iov_len = sldns_buffer_remaining(rep.c->buffer);
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_control = ancil;
#ifndef S_SPLINT_S
msg.msg_controllen = sizeof(ancil);
#endif /* S_SPLINT_S */
msg.msg_flags = 0;
rcv = recvmsg(fd, &msg, 0);
if(rcv == -1) {
if(errno != EAGAIN && errno != EINTR) {
log_err("recvmsg failed: %s", strerror(errno));
}
return;
}
rep.addrlen = msg.msg_namelen;
sldns_buffer_skip(rep.c->buffer, rcv);
sldns_buffer_flip(rep.c->buffer);
rep.srctype = 0;
#ifndef S_SPLINT_S
for(cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;
cmsg = CMSG_NXTHDR(&msg, cmsg)) {
if( cmsg->cmsg_level == IPPROTO_IPV6 &&
cmsg->cmsg_type == IPV6_PKTINFO) {
rep.srctype = 6;
memmove(&rep.pktinfo.v6info, CMSG_DATA(cmsg),
sizeof(struct in6_pktinfo));
break;
#ifdef IP_PKTINFO
} else if( cmsg->cmsg_level == IPPROTO_IP &&
cmsg->cmsg_type == IP_PKTINFO) {
rep.srctype = 4;
memmove(&rep.pktinfo.v4info, CMSG_DATA(cmsg),
sizeof(struct in_pktinfo));
break;
#elif defined(IP_RECVDSTADDR)
} else if( cmsg->cmsg_level == IPPROTO_IP &&
cmsg->cmsg_type == IP_RECVDSTADDR) {
rep.srctype = 4;
memmove(&rep.pktinfo.v4addr, CMSG_DATA(cmsg),
sizeof(struct in_addr));
break;
#endif /* IP_PKTINFO or IP_RECVDSTADDR */
}
}
if(verbosity >= VERB_ALGO)
p_ancil("receive_udp on interface", &rep);
#endif /* S_SPLINT_S */
fptr_ok(fptr_whitelist_comm_point(rep.c->callback));
if((*rep.c->callback)(rep.c, rep.c->cb_arg, NETEVENT_NOERROR, &rep)) {
/* send back immediate reply */
(void)comm_point_send_udp_msg_if(rep.c, rep.c->buffer,
(struct sockaddr*)&rep.addr, rep.addrlen, &rep);
}
if(rep.c->fd == -1) /* commpoint closed */
break;
}
#else
(void)fd;
(void)event;
(void)arg;
fatal_exit("recvmsg: No support for IPV6_PKTINFO. "
"Please disable interface-automatic");
#endif /* AF_INET6 && IPV6_PKTINFO && HAVE_RECVMSG */
}
void
comm_point_udp_callback(int fd, short event, void* arg)
{
struct comm_reply rep;
ssize_t rcv;
int i;
rep.c = (struct comm_point*)arg;
log_assert(rep.c->type == comm_udp);
if(!(event&EV_READ))
return;
log_assert(rep.c && rep.c->buffer && rep.c->fd == fd);
comm_base_now(rep.c->ev->base);
for(i=0; i<NUM_UDP_PER_SELECT; i++) {
sldns_buffer_clear(rep.c->buffer);
rep.addrlen = (socklen_t)sizeof(rep.addr);
log_assert(fd != -1);
log_assert(sldns_buffer_remaining(rep.c->buffer) > 0);
rcv = recvfrom(fd, (void*)sldns_buffer_begin(rep.c->buffer),
sldns_buffer_remaining(rep.c->buffer), 0,
(struct sockaddr*)&rep.addr, &rep.addrlen);
if(rcv == -1) {
#ifndef USE_WINSOCK
if(errno != EAGAIN && errno != EINTR)
log_err("recvfrom %d failed: %s",
fd, strerror(errno));
#else
if(WSAGetLastError() != WSAEINPROGRESS &&
WSAGetLastError() != WSAECONNRESET &&
WSAGetLastError()!= WSAEWOULDBLOCK)
log_err("recvfrom failed: %s",
wsa_strerror(WSAGetLastError()));
#endif
return;
}
sldns_buffer_skip(rep.c->buffer, rcv);
sldns_buffer_flip(rep.c->buffer);
rep.srctype = 0;
fptr_ok(fptr_whitelist_comm_point(rep.c->callback));
if((*rep.c->callback)(rep.c, rep.c->cb_arg, NETEVENT_NOERROR, &rep)) {
/* send back immediate reply */
(void)comm_point_send_udp_msg(rep.c, rep.c->buffer,
(struct sockaddr*)&rep.addr, rep.addrlen);
}
if(rep.c->fd != fd) /* commpoint closed to -1 or reused for
another UDP port. Note rep.c cannot be reused with TCP fd. */
break;
}
}
/** Use a new tcp handler for new query fd, set to read query */
static void
setup_tcp_handler(struct comm_point* c, int fd)
{
log_assert(c->type == comm_tcp);
log_assert(c->fd == -1);
sldns_buffer_clear(c->buffer);
c->tcp_is_reading = 1;
c->tcp_byte_count = 0;
comm_point_start_listening(c, fd, TCP_QUERY_TIMEOUT);
}
void comm_base_handle_slow_accept(int ATTR_UNUSED(fd),
short ATTR_UNUSED(event), void* arg)
{
struct comm_base* b = (struct comm_base*)arg;
/* timeout for the slow accept, re-enable accepts again */
if(b->start_accept) {
verbose(VERB_ALGO, "wait is over, slow accept disabled");
fptr_ok(fptr_whitelist_start_accept(b->start_accept));
(*b->start_accept)(b->cb_arg);
b->eb->slow_accept_enabled = 0;
}
}
int comm_point_perform_accept(struct comm_point* c,
struct sockaddr_storage* addr, socklen_t* addrlen)
{
int new_fd;
*addrlen = (socklen_t)sizeof(*addr);
new_fd = accept(c->fd, (struct sockaddr*)addr, addrlen);
if(new_fd == -1) {
#ifndef USE_WINSOCK
/* EINTR is signal interrupt. others are closed connection. */
if( errno == EINTR || errno == EAGAIN
#ifdef EWOULDBLOCK
|| errno == EWOULDBLOCK
#endif
#ifdef ECONNABORTED
|| errno == ECONNABORTED
#endif
#ifdef EPROTO
|| errno == EPROTO
#endif /* EPROTO */
)
return -1;
#if defined(ENFILE) && defined(EMFILE)
if(errno == ENFILE || errno == EMFILE) {
/* out of file descriptors, likely outside of our
* control. stop accept() calls for some time */
if(c->ev->base->stop_accept) {
struct comm_base* b = c->ev->base;
struct timeval tv;
verbose(VERB_ALGO, "out of file descriptors: "
"slow accept");
b->eb->slow_accept_enabled = 1;
fptr_ok(fptr_whitelist_stop_accept(
b->stop_accept));
(*b->stop_accept)(b->cb_arg);
/* set timeout, no mallocs */
tv.tv_sec = NETEVENT_SLOW_ACCEPT_TIME/1000;
tv.tv_usec = NETEVENT_SLOW_ACCEPT_TIME%1000;
event_set(&b->eb->slow_accept, -1, EV_TIMEOUT,
comm_base_handle_slow_accept, b);
if(event_base_set(b->eb->base,
&b->eb->slow_accept) != 0) {
/* we do not want to log here, because
* that would spam the logfiles.
* error: "event_base_set failed." */
}
if(event_add(&b->eb->slow_accept, &tv) != 0) {
/* we do not want to log here,
* error: "event_add failed." */
}
}
return -1;
}
#endif
log_err_addr("accept failed", strerror(errno), addr, *addrlen);
#else /* USE_WINSOCK */
if(WSAGetLastError() == WSAEINPROGRESS ||
WSAGetLastError() == WSAECONNRESET)
return -1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
winsock_tcp_wouldblock(&c->ev->ev, EV_READ);
return -1;
}
log_err_addr("accept failed", wsa_strerror(WSAGetLastError()),
addr, *addrlen);
#endif
return -1;
}
fd_set_nonblock(new_fd);
return new_fd;
}
#ifdef USE_WINSOCK
static long win_bio_cb(BIO *b, int oper, const char* ATTR_UNUSED(argp),
int ATTR_UNUSED(argi), long argl, long retvalue)
{
verbose(VERB_ALGO, "bio_cb %d, %s %s %s", oper,
(oper&BIO_CB_RETURN)?"return":"before",
(oper&BIO_CB_READ)?"read":((oper&BIO_CB_WRITE)?"write":"other"),
WSAGetLastError()==WSAEWOULDBLOCK?"wsawb":"");
/* on windows, check if previous operation caused EWOULDBLOCK */
if( (oper == (BIO_CB_READ|BIO_CB_RETURN) && argl == 0) ||
(oper == (BIO_CB_GETS|BIO_CB_RETURN) && argl == 0)) {
if(WSAGetLastError() == WSAEWOULDBLOCK)
winsock_tcp_wouldblock((struct event*)
BIO_get_callback_arg(b), EV_READ);
}
if( (oper == (BIO_CB_WRITE|BIO_CB_RETURN) && argl == 0) ||
(oper == (BIO_CB_PUTS|BIO_CB_RETURN) && argl == 0)) {
if(WSAGetLastError() == WSAEWOULDBLOCK)
winsock_tcp_wouldblock((struct event*)
BIO_get_callback_arg(b), EV_WRITE);
}
/* return original return value */
return retvalue;
}
/** set win bio callbacks for nonblocking operations */
void
comm_point_tcp_win_bio_cb(struct comm_point* c, void* thessl)
{
SSL* ssl = (SSL*)thessl;
/* set them both just in case, but usually they are the same BIO */
BIO_set_callback(SSL_get_rbio(ssl), &win_bio_cb);
BIO_set_callback_arg(SSL_get_rbio(ssl), (char*)&c->ev->ev);
BIO_set_callback(SSL_get_wbio(ssl), &win_bio_cb);
BIO_set_callback_arg(SSL_get_wbio(ssl), (char*)&c->ev->ev);
}
#endif
void
comm_point_tcp_accept_callback(int fd, short event, void* arg)
{
struct comm_point* c = (struct comm_point*)arg, *c_hdl;
int new_fd;
log_assert(c->type == comm_tcp_accept);
if(!(event & EV_READ)) {
log_info("ignoring tcp accept event %d", (int)event);
return;
}
comm_base_now(c->ev->base);
/* find free tcp handler. */
if(!c->tcp_free) {
log_warn("accepted too many tcp, connections full");
return;
}
/* accept incoming connection. */
c_hdl = c->tcp_free;
log_assert(fd != -1);
new_fd = comm_point_perform_accept(c, &c_hdl->repinfo.addr,
&c_hdl->repinfo.addrlen);
if(new_fd == -1)
return;
if(c->ssl) {
c_hdl->ssl = incoming_ssl_fd(c->ssl, new_fd);
if(!c_hdl->ssl) {
c_hdl->fd = new_fd;
comm_point_close(c_hdl);
return;
}
c_hdl->ssl_shake_state = comm_ssl_shake_read;
#ifdef USE_WINSOCK
comm_point_tcp_win_bio_cb(c_hdl, c_hdl->ssl);
#endif
}
/* grab the tcp handler buffers */
c->cur_tcp_count++;
c->tcp_free = c_hdl->tcp_free;
if(!c->tcp_free) {
/* stop accepting incoming queries for now. */
comm_point_stop_listening(c);
}
setup_tcp_handler(c_hdl, new_fd);
}
/** Make tcp handler free for next assignment */
static void
reclaim_tcp_handler(struct comm_point* c)
{
log_assert(c->type == comm_tcp);
if(c->ssl) {
#ifdef HAVE_SSL
SSL_shutdown(c->ssl);
SSL_free(c->ssl);
c->ssl = NULL;
#endif
}
comm_point_close(c);
if(c->tcp_parent) {
c->tcp_parent->cur_tcp_count--;
c->tcp_free = c->tcp_parent->tcp_free;
c->tcp_parent->tcp_free = c;
if(!c->tcp_free) {
/* re-enable listening on accept socket */
comm_point_start_listening(c->tcp_parent, -1, -1);
}
}
}
/** do the callback when writing is done */
static void
tcp_callback_writer(struct comm_point* c)
{
log_assert(c->type == comm_tcp);
sldns_buffer_clear(c->buffer);
if(c->tcp_do_toggle_rw)
c->tcp_is_reading = 1;
c->tcp_byte_count = 0;
/* switch from listening(write) to listening(read) */
comm_point_stop_listening(c);
comm_point_start_listening(c, -1, -1);
}
/** do the callback when reading is done */
static void
tcp_callback_reader(struct comm_point* c)
{
log_assert(c->type == comm_tcp || c->type == comm_local);
sldns_buffer_flip(c->buffer);
if(c->tcp_do_toggle_rw)
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
if(c->type == comm_tcp)
comm_point_stop_listening(c);
fptr_ok(fptr_whitelist_comm_point(c->callback));
if( (*c->callback)(c, c->cb_arg, NETEVENT_NOERROR, &c->repinfo) ) {
comm_point_start_listening(c, -1, TCP_QUERY_TIMEOUT);
}
}
/** continue ssl handshake */
#ifdef HAVE_SSL
static int
ssl_handshake(struct comm_point* c)
{
int r;
if(c->ssl_shake_state == comm_ssl_shake_hs_read) {
/* read condition satisfied back to writing */
comm_point_listen_for_rw(c, 1, 1);
c->ssl_shake_state = comm_ssl_shake_none;
return 1;
}
if(c->ssl_shake_state == comm_ssl_shake_hs_write) {
/* write condition satisfied, back to reading */
comm_point_listen_for_rw(c, 1, 0);
c->ssl_shake_state = comm_ssl_shake_none;
return 1;
}
ERR_clear_error();
r = SSL_do_handshake(c->ssl);
if(r != 1) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_WANT_READ) {
if(c->ssl_shake_state == comm_ssl_shake_read)
return 1;
c->ssl_shake_state = comm_ssl_shake_read;
comm_point_listen_for_rw(c, 1, 0);
return 1;
} else if(want == SSL_ERROR_WANT_WRITE) {
if(c->ssl_shake_state == comm_ssl_shake_write)
return 1;
c->ssl_shake_state = comm_ssl_shake_write;
comm_point_listen_for_rw(c, 0, 1);
return 1;
} else if(r == 0) {
return 0; /* closed */
} else if(want == SSL_ERROR_SYSCALL) {
/* SYSCALL and errno==0 means closed uncleanly */
if(errno != 0)
log_err("SSL_handshake syscall: %s",
strerror(errno));
return 0;
} else {
log_crypto_err("ssl handshake failed");
log_addr(1, "ssl handshake failed", &c->repinfo.addr,
c->repinfo.addrlen);
return 0;
}
}
/* this is where peer verification could take place */
log_addr(VERB_ALGO, "SSL DNS connection", &c->repinfo.addr,
c->repinfo.addrlen);
/* setup listen rw correctly */
if(c->tcp_is_reading) {
if(c->ssl_shake_state != comm_ssl_shake_read)
comm_point_listen_for_rw(c, 1, 0);
} else {
comm_point_listen_for_rw(c, 1, 1);
}
c->ssl_shake_state = comm_ssl_shake_none;
return 1;
}
#endif /* HAVE_SSL */
/** ssl read callback on TCP */
static int
ssl_handle_read(struct comm_point* c)
{
#ifdef HAVE_SSL
int r;
if(c->ssl_shake_state != comm_ssl_shake_none) {
if(!ssl_handshake(c))
return 0;
if(c->ssl_shake_state != comm_ssl_shake_none)
return 1;
}
if(c->tcp_byte_count < sizeof(uint16_t)) {
/* read length bytes */
ERR_clear_error();
if((r=SSL_read(c->ssl, (void*)sldns_buffer_at(c->buffer,
c->tcp_byte_count), (int)(sizeof(uint16_t) -
c->tcp_byte_count))) <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
return 0; /* shutdown, closed */
} else if(want == SSL_ERROR_WANT_READ) {
return 1; /* read more later */
} else if(want == SSL_ERROR_WANT_WRITE) {
c->ssl_shake_state = comm_ssl_shake_hs_write;
comm_point_listen_for_rw(c, 0, 1);
return 1;
} else if(want == SSL_ERROR_SYSCALL) {
if(errno != 0)
log_err("SSL_read syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err("could not SSL_read");
return 0;
}
c->tcp_byte_count += r;
if(c->tcp_byte_count != sizeof(uint16_t))
return 1;
if(sldns_buffer_read_u16_at(c->buffer, 0) >
sldns_buffer_capacity(c->buffer)) {
verbose(VERB_QUERY, "ssl: dropped larger than buffer");
return 0;
}
sldns_buffer_set_limit(c->buffer,
sldns_buffer_read_u16_at(c->buffer, 0));
if(sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) {
verbose(VERB_QUERY, "ssl: dropped bogus too short.");
return 0;
}
verbose(VERB_ALGO, "Reading ssl tcp query of length %d",
(int)sldns_buffer_limit(c->buffer));
}
log_assert(sldns_buffer_remaining(c->buffer) > 0);
ERR_clear_error();
r = SSL_read(c->ssl, (void*)sldns_buffer_current(c->buffer),
(int)sldns_buffer_remaining(c->buffer));
if(r <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
return 0; /* shutdown, closed */
} else if(want == SSL_ERROR_WANT_READ) {
return 1; /* read more later */
} else if(want == SSL_ERROR_WANT_WRITE) {
c->ssl_shake_state = comm_ssl_shake_hs_write;
comm_point_listen_for_rw(c, 0, 1);
return 1;
} else if(want == SSL_ERROR_SYSCALL) {
if(errno != 0)
log_err("SSL_read syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err("could not SSL_read");
return 0;
}
sldns_buffer_skip(c->buffer, (ssize_t)r);
if(sldns_buffer_remaining(c->buffer) <= 0) {
tcp_callback_reader(c);
}
return 1;
#else
(void)c;
return 0;
#endif /* HAVE_SSL */
}
/** ssl write callback on TCP */
static int
ssl_handle_write(struct comm_point* c)
{
#ifdef HAVE_SSL
int r;
if(c->ssl_shake_state != comm_ssl_shake_none) {
if(!ssl_handshake(c))
return 0;
if(c->ssl_shake_state != comm_ssl_shake_none)
return 1;
}
/* ignore return, if fails we may simply block */
(void)SSL_set_mode(c->ssl, SSL_MODE_ENABLE_PARTIAL_WRITE);
if(c->tcp_byte_count < sizeof(uint16_t)) {
uint16_t len = htons(sldns_buffer_limit(c->buffer));
ERR_clear_error();
r = SSL_write(c->ssl,
(void*)(((uint8_t*)&len)+c->tcp_byte_count),
(int)(sizeof(uint16_t)-c->tcp_byte_count));
if(r <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
return 0; /* closed */
} else if(want == SSL_ERROR_WANT_READ) {
c->ssl_shake_state = comm_ssl_shake_read;
comm_point_listen_for_rw(c, 1, 0);
return 1; /* wait for read condition */
} else if(want == SSL_ERROR_WANT_WRITE) {
return 1; /* write more later */
} else if(want == SSL_ERROR_SYSCALL) {
if(errno != 0)
log_err("SSL_write syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err("could not SSL_write");
return 0;
}
c->tcp_byte_count += r;
if(c->tcp_byte_count < sizeof(uint16_t))
return 1;
sldns_buffer_set_position(c->buffer, c->tcp_byte_count -
sizeof(uint16_t));
if(sldns_buffer_remaining(c->buffer) == 0) {
tcp_callback_writer(c);
return 1;
}
}
log_assert(sldns_buffer_remaining(c->buffer) > 0);
ERR_clear_error();
r = SSL_write(c->ssl, (void*)sldns_buffer_current(c->buffer),
(int)sldns_buffer_remaining(c->buffer));
if(r <= 0) {
int want = SSL_get_error(c->ssl, r);
if(want == SSL_ERROR_ZERO_RETURN) {
return 0; /* closed */
} else if(want == SSL_ERROR_WANT_READ) {
c->ssl_shake_state = comm_ssl_shake_read;
comm_point_listen_for_rw(c, 1, 0);
return 1; /* wait for read condition */
} else if(want == SSL_ERROR_WANT_WRITE) {
return 1; /* write more later */
} else if(want == SSL_ERROR_SYSCALL) {
if(errno != 0)
log_err("SSL_write syscall: %s",
strerror(errno));
return 0;
}
log_crypto_err("could not SSL_write");
return 0;
}
sldns_buffer_skip(c->buffer, (ssize_t)r);
if(sldns_buffer_remaining(c->buffer) == 0) {
tcp_callback_writer(c);
}
return 1;
#else
(void)c;
return 0;
#endif /* HAVE_SSL */
}
/** handle ssl tcp connection with dns contents */
static int
ssl_handle_it(struct comm_point* c)
{
if(c->tcp_is_reading)
return ssl_handle_read(c);
return ssl_handle_write(c);
}
/** Handle tcp reading callback.
* @param fd: file descriptor of socket.
* @param c: comm point to read from into buffer.
* @param short_ok: if true, very short packets are OK (for comm_local).
* @return: 0 on error
*/
static int
comm_point_tcp_handle_read(int fd, struct comm_point* c, int short_ok)
{
ssize_t r;
log_assert(c->type == comm_tcp || c->type == comm_local);
if(c->ssl)
return ssl_handle_it(c);
if(!c->tcp_is_reading)
return 0;
log_assert(fd != -1);
if(c->tcp_byte_count < sizeof(uint16_t)) {
/* read length bytes */
r = recv(fd,(void*)sldns_buffer_at(c->buffer,c->tcp_byte_count),
sizeof(uint16_t)-c->tcp_byte_count, 0);
if(r == 0)
return 0;
else if(r == -1) {
#ifndef USE_WINSOCK
if(errno == EINTR || errno == EAGAIN)
return 1;
#ifdef ECONNRESET
if(errno == ECONNRESET && verbosity < 2)
return 0; /* silence reset by peer */
#endif
log_err_addr("read (in tcp s)", strerror(errno),
&c->repinfo.addr, c->repinfo.addrlen);
#else /* USE_WINSOCK */
if(WSAGetLastError() == WSAECONNRESET)
return 0;
if(WSAGetLastError() == WSAEINPROGRESS)
return 1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
winsock_tcp_wouldblock(&c->ev->ev, EV_READ);
return 1;
}
log_err_addr("read (in tcp s)",
wsa_strerror(WSAGetLastError()),
&c->repinfo.addr, c->repinfo.addrlen);
#endif
return 0;
}
c->tcp_byte_count += r;
if(c->tcp_byte_count != sizeof(uint16_t))
return 1;
if(sldns_buffer_read_u16_at(c->buffer, 0) >
sldns_buffer_capacity(c->buffer)) {
verbose(VERB_QUERY, "tcp: dropped larger than buffer");
return 0;
}
sldns_buffer_set_limit(c->buffer,
sldns_buffer_read_u16_at(c->buffer, 0));
if(!short_ok &&
sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) {
verbose(VERB_QUERY, "tcp: dropped bogus too short.");
return 0;
}
verbose(VERB_ALGO, "Reading tcp query of length %d",
(int)sldns_buffer_limit(c->buffer));
}
log_assert(sldns_buffer_remaining(c->buffer) > 0);
r = recv(fd, (void*)sldns_buffer_current(c->buffer),
sldns_buffer_remaining(c->buffer), 0);
if(r == 0) {
return 0;
} else if(r == -1) {
#ifndef USE_WINSOCK
if(errno == EINTR || errno == EAGAIN)
return 1;
log_err_addr("read (in tcp r)", strerror(errno),
&c->repinfo.addr, c->repinfo.addrlen);
#else /* USE_WINSOCK */
if(WSAGetLastError() == WSAECONNRESET)
return 0;
if(WSAGetLastError() == WSAEINPROGRESS)
return 1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
winsock_tcp_wouldblock(&c->ev->ev, EV_READ);
return 1;
}
log_err_addr("read (in tcp r)",
wsa_strerror(WSAGetLastError()),
&c->repinfo.addr, c->repinfo.addrlen);
#endif
return 0;
}
sldns_buffer_skip(c->buffer, r);
if(sldns_buffer_remaining(c->buffer) <= 0) {
tcp_callback_reader(c);
}
return 1;
}
/**
* Handle tcp writing callback.
* @param fd: file descriptor of socket.
* @param c: comm point to write buffer out of.
* @return: 0 on error
*/
static int
comm_point_tcp_handle_write(int fd, struct comm_point* c)
{
ssize_t r;
log_assert(c->type == comm_tcp);
if(c->tcp_is_reading && !c->ssl)
return 0;
log_assert(fd != -1);
if(c->tcp_byte_count == 0 && c->tcp_check_nb_connect) {
/* check for pending error from nonblocking connect */
/* from Stevens, unix network programming, vol1, 3rd ed, p450*/
int error = 0;
socklen_t len = (socklen_t)sizeof(error);
if(getsockopt(fd, SOL_SOCKET, SO_ERROR, (void*)&error,
&len) < 0){
#ifndef USE_WINSOCK
error = errno; /* on solaris errno is error */
#else /* USE_WINSOCK */
error = WSAGetLastError();
#endif
}
#ifndef USE_WINSOCK
#if defined(EINPROGRESS) && defined(EWOULDBLOCK)
if(error == EINPROGRESS || error == EWOULDBLOCK)
return 1; /* try again later */
else
#endif
if(error != 0 && verbosity < 2)
return 0; /* silence lots of chatter in the logs */
else if(error != 0) {
log_err_addr("tcp connect", strerror(error),
&c->repinfo.addr, c->repinfo.addrlen);
#else /* USE_WINSOCK */
/* examine error */
if(error == WSAEINPROGRESS)
return 1;
else if(error == WSAEWOULDBLOCK) {
winsock_tcp_wouldblock(&c->ev->ev, EV_WRITE);
return 1;
} else if(error != 0 && verbosity < 2)
return 0;
else if(error != 0) {
log_err_addr("tcp connect", wsa_strerror(error),
&c->repinfo.addr, c->repinfo.addrlen);
#endif /* USE_WINSOCK */
return 0;
}
}
if(c->ssl)
return ssl_handle_it(c);
if(c->tcp_byte_count < sizeof(uint16_t)) {
uint16_t len = htons(sldns_buffer_limit(c->buffer));
#ifdef HAVE_WRITEV
struct iovec iov[2];
iov[0].iov_base = (uint8_t*)&len + c->tcp_byte_count;
iov[0].iov_len = sizeof(uint16_t) - c->tcp_byte_count;
iov[1].iov_base = sldns_buffer_begin(c->buffer);
iov[1].iov_len = sldns_buffer_limit(c->buffer);
log_assert(iov[0].iov_len > 0);
log_assert(iov[1].iov_len > 0);
r = writev(fd, iov, 2);
#else /* HAVE_WRITEV */
r = send(fd, (void*)(((uint8_t*)&len)+c->tcp_byte_count),
sizeof(uint16_t)-c->tcp_byte_count, 0);
#endif /* HAVE_WRITEV */
if(r == -1) {
#ifndef USE_WINSOCK
# ifdef EPIPE
if(errno == EPIPE && verbosity < 2)
return 0; /* silence 'broken pipe' */
#endif
if(errno == EINTR || errno == EAGAIN)
return 1;
# ifdef HAVE_WRITEV
log_err_addr("tcp writev", strerror(errno),
&c->repinfo.addr, c->repinfo.addrlen);
# else /* HAVE_WRITEV */
log_err_addr("tcp send s", strerror(errno),
&c->repinfo.addr, c->repinfo.addrlen);
# endif /* HAVE_WRITEV */
#else
if(WSAGetLastError() == WSAENOTCONN)
return 1;
if(WSAGetLastError() == WSAEINPROGRESS)
return 1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
winsock_tcp_wouldblock(&c->ev->ev, EV_WRITE);
return 1;
}
log_err_addr("tcp send s",
wsa_strerror(WSAGetLastError()),
&c->repinfo.addr, c->repinfo.addrlen);
#endif
return 0;
}
c->tcp_byte_count += r;
if(c->tcp_byte_count < sizeof(uint16_t))
return 1;
sldns_buffer_set_position(c->buffer, c->tcp_byte_count -
sizeof(uint16_t));
if(sldns_buffer_remaining(c->buffer) == 0) {
tcp_callback_writer(c);
return 1;
}
}
log_assert(sldns_buffer_remaining(c->buffer) > 0);
r = send(fd, (void*)sldns_buffer_current(c->buffer),
sldns_buffer_remaining(c->buffer), 0);
if(r == -1) {
#ifndef USE_WINSOCK
if(errno == EINTR || errno == EAGAIN)
return 1;
log_err_addr("tcp send r", strerror(errno),
&c->repinfo.addr, c->repinfo.addrlen);
#else
if(WSAGetLastError() == WSAEINPROGRESS)
return 1;
if(WSAGetLastError() == WSAEWOULDBLOCK) {
winsock_tcp_wouldblock(&c->ev->ev, EV_WRITE);
return 1;
}
log_err_addr("tcp send r", wsa_strerror(WSAGetLastError()),
&c->repinfo.addr, c->repinfo.addrlen);
#endif
return 0;
}
sldns_buffer_skip(c->buffer, r);
if(sldns_buffer_remaining(c->buffer) == 0) {
tcp_callback_writer(c);
}
return 1;
}
void
comm_point_tcp_handle_callback(int fd, short event, void* arg)
{
struct comm_point* c = (struct comm_point*)arg;
log_assert(c->type == comm_tcp);
comm_base_now(c->ev->base);
if(event&EV_READ) {
if(!comm_point_tcp_handle_read(fd, c, 0)) {
reclaim_tcp_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(
c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_CLOSED, NULL);
}
}
return;
}
if(event&EV_WRITE) {
if(!comm_point_tcp_handle_write(fd, c)) {
reclaim_tcp_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(
c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_CLOSED, NULL);
}
}
return;
}
if(event&EV_TIMEOUT) {
verbose(VERB_QUERY, "tcp took too long, dropped");
reclaim_tcp_handler(c);
if(!c->tcp_do_close) {
fptr_ok(fptr_whitelist_comm_point(c->callback));
(void)(*c->callback)(c, c->cb_arg,
NETEVENT_TIMEOUT, NULL);
}
return;
}
log_err("Ignored event %d for tcphdl.", event);
}
void comm_point_local_handle_callback(int fd, short event, void* arg)
{
struct comm_point* c = (struct comm_point*)arg;
log_assert(c->type == comm_local);
comm_base_now(c->ev->base);
if(event&EV_READ) {
if(!comm_point_tcp_handle_read(fd, c, 1)) {
fptr_ok(fptr_whitelist_comm_point(c->callback));
(void)(*c->callback)(c, c->cb_arg, NETEVENT_CLOSED,
NULL);
}
return;
}
log_err("Ignored event %d for localhdl.", event);
}
void comm_point_raw_handle_callback(int ATTR_UNUSED(fd),
short event, void* arg)
{
struct comm_point* c = (struct comm_point*)arg;
int err = NETEVENT_NOERROR;
log_assert(c->type == comm_raw);
comm_base_now(c->ev->base);
if(event&EV_TIMEOUT)
err = NETEVENT_TIMEOUT;
fptr_ok(fptr_whitelist_comm_point_raw(c->callback));
(void)(*c->callback)(c, c->cb_arg, err, NULL);
}
struct comm_point*
comm_point_create_udp(struct comm_base *base, int fd, sldns_buffer* buffer,
comm_point_callback_t* callback, void* callback_arg)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = fd;
c->buffer = buffer;
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_udp;
c->tcp_do_close = 0;
c->do_not_close = 0;
c->tcp_do_toggle_rw = 0;
c->tcp_check_nb_connect = 0;
c->inuse = 0;
c->callback = callback;
c->cb_arg = callback_arg;
evbits = EV_READ | EV_PERSIST;
/* libevent stuff */
event_set(&c->ev->ev, c->fd, evbits, comm_point_udp_callback, c);
if(event_base_set(base->eb->base, &c->ev->ev) != 0) {
log_err("could not baseset udp event");
comm_point_delete(c);
return NULL;
}
if(fd!=-1 && event_add(&c->ev->ev, c->timeout) != 0 ) {
log_err("could not add udp event");
comm_point_delete(c);
return NULL;
}
return c;
}
struct comm_point*
comm_point_create_udp_ancil(struct comm_base *base, int fd,
sldns_buffer* buffer,
comm_point_callback_t* callback, void* callback_arg)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = fd;
c->buffer = buffer;
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_udp;
c->tcp_do_close = 0;
c->do_not_close = 0;
c->inuse = 0;
c->tcp_do_toggle_rw = 0;
c->tcp_check_nb_connect = 0;
c->callback = callback;
c->cb_arg = callback_arg;
evbits = EV_READ | EV_PERSIST;
/* libevent stuff */
event_set(&c->ev->ev, c->fd, evbits, comm_point_udp_ancil_callback, c);
if(event_base_set(base->eb->base, &c->ev->ev) != 0) {
log_err("could not baseset udp event");
comm_point_delete(c);
return NULL;
}
if(fd!=-1 && event_add(&c->ev->ev, c->timeout) != 0 ) {
log_err("could not add udp event");
comm_point_delete(c);
return NULL;
}
return c;
}
static struct comm_point*
comm_point_create_tcp_handler(struct comm_base *base,
struct comm_point* parent, size_t bufsize,
comm_point_callback_t* callback, void* callback_arg)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = -1;
c->buffer = sldns_buffer_new(bufsize);
if(!c->buffer) {
free(c->ev);
free(c);
return NULL;
}
c->timeout = (struct timeval*)malloc(sizeof(struct timeval));
if(!c->timeout) {
sldns_buffer_free(c->buffer);
free(c->ev);
free(c);
return NULL;
}
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = parent;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_tcp;
c->tcp_do_close = 0;
c->do_not_close = 0;
c->tcp_do_toggle_rw = 1;
c->tcp_check_nb_connect = 0;
c->repinfo.c = c;
c->callback = callback;
c->cb_arg = callback_arg;
/* add to parent free list */
c->tcp_free = parent->tcp_free;
parent->tcp_free = c;
/* libevent stuff */
evbits = EV_PERSIST | EV_READ | EV_TIMEOUT;
event_set(&c->ev->ev, c->fd, evbits, comm_point_tcp_handle_callback, c);
if(event_base_set(base->eb->base, &c->ev->ev) != 0)
{
log_err("could not basetset tcphdl event");
parent->tcp_free = c->tcp_free;
free(c->ev);
free(c);
return NULL;
}
return c;
}
struct comm_point*
comm_point_create_tcp(struct comm_base *base, int fd, int num, size_t bufsize,
comm_point_callback_t* callback, void* callback_arg)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
int i;
/* first allocate the TCP accept listener */
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = fd;
c->buffer = NULL;
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = num;
c->cur_tcp_count = 0;
c->tcp_handlers = (struct comm_point**)calloc((size_t)num,
sizeof(struct comm_point*));
if(!c->tcp_handlers) {
free(c->ev);
free(c);
return NULL;
}
c->tcp_free = NULL;
c->type = comm_tcp_accept;
c->tcp_do_close = 0;
c->do_not_close = 0;
c->tcp_do_toggle_rw = 0;
c->tcp_check_nb_connect = 0;
c->callback = NULL;
c->cb_arg = NULL;
evbits = EV_READ | EV_PERSIST;
/* libevent stuff */
event_set(&c->ev->ev, c->fd, evbits, comm_point_tcp_accept_callback, c);
if(event_base_set(base->eb->base, &c->ev->ev) != 0 ||
event_add(&c->ev->ev, c->timeout) != 0 )
{
log_err("could not add tcpacc event");
comm_point_delete(c);
return NULL;
}
/* now prealloc the tcp handlers */
for(i=0; i<num; i++) {
c->tcp_handlers[i] = comm_point_create_tcp_handler(base,
c, bufsize, callback, callback_arg);
if(!c->tcp_handlers[i]) {
comm_point_delete(c);
return NULL;
}
}
return c;
}
struct comm_point*
comm_point_create_tcp_out(struct comm_base *base, size_t bufsize,
comm_point_callback_t* callback, void* callback_arg)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = -1;
c->buffer = sldns_buffer_new(bufsize);
if(!c->buffer) {
free(c->ev);
free(c);
return NULL;
}
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_tcp;
c->tcp_do_close = 0;
c->do_not_close = 0;
c->tcp_do_toggle_rw = 1;
c->tcp_check_nb_connect = 1;
c->repinfo.c = c;
c->callback = callback;
c->cb_arg = callback_arg;
evbits = EV_PERSIST | EV_WRITE;
event_set(&c->ev->ev, c->fd, evbits, comm_point_tcp_handle_callback, c);
if(event_base_set(base->eb->base, &c->ev->ev) != 0)
{
log_err("could not basetset tcpout event");
sldns_buffer_free(c->buffer);
free(c->ev);
free(c);
return NULL;
}
return c;
}
struct comm_point*
comm_point_create_local(struct comm_base *base, int fd, size_t bufsize,
comm_point_callback_t* callback, void* callback_arg)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = fd;
c->buffer = sldns_buffer_new(bufsize);
if(!c->buffer) {
free(c->ev);
free(c);
return NULL;
}
c->timeout = NULL;
c->tcp_is_reading = 1;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_local;
c->tcp_do_close = 0;
c->do_not_close = 1;
c->tcp_do_toggle_rw = 0;
c->tcp_check_nb_connect = 0;
c->callback = callback;
c->cb_arg = callback_arg;
/* libevent stuff */
evbits = EV_PERSIST | EV_READ;
event_set(&c->ev->ev, c->fd, evbits, comm_point_local_handle_callback,
c);
if(event_base_set(base->eb->base, &c->ev->ev) != 0 ||
event_add(&c->ev->ev, c->timeout) != 0 )
{
log_err("could not add localhdl event");
free(c->ev);
free(c);
return NULL;
}
return c;
}
struct comm_point*
comm_point_create_raw(struct comm_base* base, int fd, int writing,
comm_point_callback_t* callback, void* callback_arg)
{
struct comm_point* c = (struct comm_point*)calloc(1,
sizeof(struct comm_point));
short evbits;
if(!c)
return NULL;
c->ev = (struct internal_event*)calloc(1,
sizeof(struct internal_event));
if(!c->ev) {
free(c);
return NULL;
}
c->ev->base = base;
c->fd = fd;
c->buffer = NULL;
c->timeout = NULL;
c->tcp_is_reading = 0;
c->tcp_byte_count = 0;
c->tcp_parent = NULL;
c->max_tcp_count = 0;
c->cur_tcp_count = 0;
c->tcp_handlers = NULL;
c->tcp_free = NULL;
c->type = comm_raw;
c->tcp_do_close = 0;
c->do_not_close = 1;
c->tcp_do_toggle_rw = 0;
c->tcp_check_nb_connect = 0;
c->callback = callback;
c->cb_arg = callback_arg;
/* libevent stuff */
if(writing)
evbits = EV_PERSIST | EV_WRITE;
else evbits = EV_PERSIST | EV_READ;
event_set(&c->ev->ev, c->fd, evbits, comm_point_raw_handle_callback,
c);
if(event_base_set(base->eb->base, &c->ev->ev) != 0 ||
event_add(&c->ev->ev, c->timeout) != 0 )
{
log_err("could not add rawhdl event");
free(c->ev);
free(c);
return NULL;
}
return c;
}
void
comm_point_close(struct comm_point* c)
{
if(!c)
return;
if(c->fd != -1)
if(event_del(&c->ev->ev) != 0) {
log_err("could not event_del on close");
}
/* close fd after removing from event lists, or epoll.. is messed up */
if(c->fd != -1 && !c->do_not_close) {
verbose(VERB_ALGO, "close fd %d", c->fd);
#ifndef USE_WINSOCK
close(c->fd);
#else
closesocket(c->fd);
#endif
}
c->fd = -1;
}
void
comm_point_delete(struct comm_point* c)
{
if(!c)
return;
if(c->type == comm_tcp && c->ssl) {
#ifdef HAVE_SSL
SSL_shutdown(c->ssl);
SSL_free(c->ssl);
#endif
}
comm_point_close(c);
if(c->tcp_handlers) {
int i;
for(i=0; i<c->max_tcp_count; i++)
comm_point_delete(c->tcp_handlers[i]);
free(c->tcp_handlers);
}
free(c->timeout);
if(c->type == comm_tcp || c->type == comm_local)
sldns_buffer_free(c->buffer);
free(c->ev);
free(c);
}
void
comm_point_send_reply(struct comm_reply *repinfo)
{
log_assert(repinfo && repinfo->c);
if(repinfo->c->type == comm_udp) {
if(repinfo->srctype)
comm_point_send_udp_msg_if(repinfo->c,
repinfo->c->buffer, (struct sockaddr*)&repinfo->addr,
repinfo->addrlen, repinfo);
else
comm_point_send_udp_msg(repinfo->c, repinfo->c->buffer,
(struct sockaddr*)&repinfo->addr, repinfo->addrlen);
#ifdef USE_DNSTAP
if(repinfo->c->dtenv != NULL &&
repinfo->c->dtenv->log_client_response_messages)
dt_msg_send_client_response(repinfo->c->dtenv,
&repinfo->addr, repinfo->c->type, repinfo->c->buffer);
#endif
} else {
#ifdef USE_DNSTAP
if(repinfo->c->tcp_parent->dtenv != NULL &&
repinfo->c->tcp_parent->dtenv->log_client_response_messages)
dt_msg_send_client_response(repinfo->c->tcp_parent->dtenv,
&repinfo->addr, repinfo->c->type, repinfo->c->buffer);
#endif
comm_point_start_listening(repinfo->c, -1, TCP_QUERY_TIMEOUT);
}
}
void
comm_point_drop_reply(struct comm_reply* repinfo)
{
if(!repinfo)
return;
log_assert(repinfo && repinfo->c);
log_assert(repinfo->c->type != comm_tcp_accept);
if(repinfo->c->type == comm_udp)
return;
reclaim_tcp_handler(repinfo->c);
}
void
comm_point_stop_listening(struct comm_point* c)
{
verbose(VERB_ALGO, "comm point stop listening %d", c->fd);
if(event_del(&c->ev->ev) != 0) {
log_err("event_del error to stoplisten");
}
}
void
comm_point_start_listening(struct comm_point* c, int newfd, int sec)
{
verbose(VERB_ALGO, "comm point start listening %d",
c->fd==-1?newfd:c->fd);
if(c->type == comm_tcp_accept && !c->tcp_free) {
/* no use to start listening no free slots. */
return;
}
if(sec != -1 && sec != 0) {
if(!c->timeout) {
c->timeout = (struct timeval*)malloc(sizeof(
struct timeval));
if(!c->timeout) {
log_err("cpsl: malloc failed. No net read.");
return;
}
}
c->ev->ev.ev_events |= EV_TIMEOUT;
#ifndef S_SPLINT_S /* splint fails on struct timeval. */
c->timeout->tv_sec = sec;
c->timeout->tv_usec = 0;
#endif /* S_SPLINT_S */
}
if(c->type == comm_tcp) {
c->ev->ev.ev_events &= ~(EV_READ|EV_WRITE);
if(c->tcp_is_reading)
c->ev->ev.ev_events |= EV_READ;
else c->ev->ev.ev_events |= EV_WRITE;
}
if(newfd != -1) {
if(c->fd != -1) {
#ifndef USE_WINSOCK
close(c->fd);
#else
closesocket(c->fd);
#endif
}
c->fd = newfd;
c->ev->ev.ev_fd = c->fd;
}
if(event_add(&c->ev->ev, sec==0?NULL:c->timeout) != 0) {
log_err("event_add failed. in cpsl.");
}
}
void comm_point_listen_for_rw(struct comm_point* c, int rd, int wr)
{
verbose(VERB_ALGO, "comm point listen_for_rw %d %d", c->fd, wr);
if(event_del(&c->ev->ev) != 0) {
log_err("event_del error to cplf");
}
c->ev->ev.ev_events &= ~(EV_READ|EV_WRITE);
if(rd) c->ev->ev.ev_events |= EV_READ;
if(wr) c->ev->ev.ev_events |= EV_WRITE;
if(event_add(&c->ev->ev, c->timeout) != 0) {
log_err("event_add failed. in cplf.");
}
}
size_t comm_point_get_mem(struct comm_point* c)
{
size_t s;
if(!c)
return 0;
s = sizeof(*c) + sizeof(*c->ev);
if(c->timeout)
s += sizeof(*c->timeout);
if(c->type == comm_tcp || c->type == comm_local)
s += sizeof(*c->buffer) + sldns_buffer_capacity(c->buffer);
if(c->type == comm_tcp_accept) {
int i;
for(i=0; i<c->max_tcp_count; i++)
s += comm_point_get_mem(c->tcp_handlers[i]);
}
return s;
}
struct comm_timer*
comm_timer_create(struct comm_base* base, void (*cb)(void*), void* cb_arg)
{
struct comm_timer *tm = (struct comm_timer*)calloc(1,
sizeof(struct comm_timer));
if(!tm)
return NULL;
tm->ev_timer = (struct internal_timer*)calloc(1,
sizeof(struct internal_timer));
if(!tm->ev_timer) {
log_err("malloc failed");
free(tm);
return NULL;
}
tm->ev_timer->base = base;
tm->callback = cb;
tm->cb_arg = cb_arg;
event_set(&tm->ev_timer->ev, -1, EV_TIMEOUT,
comm_timer_callback, tm);
if(event_base_set(base->eb->base, &tm->ev_timer->ev) != 0) {
log_err("timer_create: event_base_set failed.");
free(tm->ev_timer);
free(tm);
return NULL;
}
return tm;
}
void
comm_timer_disable(struct comm_timer* timer)
{
if(!timer)
return;
evtimer_del(&timer->ev_timer->ev);
timer->ev_timer->enabled = 0;
}
void
comm_timer_set(struct comm_timer* timer, struct timeval* tv)
{
log_assert(tv);
if(timer->ev_timer->enabled)
comm_timer_disable(timer);
event_set(&timer->ev_timer->ev, -1, EV_TIMEOUT,
comm_timer_callback, timer);
if(event_base_set(timer->ev_timer->base->eb->base,
&timer->ev_timer->ev) != 0)
log_err("comm_timer_set: set_base failed.");
if(evtimer_add(&timer->ev_timer->ev, tv) != 0)
log_err("comm_timer_set: evtimer_add failed.");
timer->ev_timer->enabled = 1;
}
void
comm_timer_delete(struct comm_timer* timer)
{
if(!timer)
return;
comm_timer_disable(timer);
free(timer->ev_timer);
free(timer);
}
void
comm_timer_callback(int ATTR_UNUSED(fd), short event, void* arg)
{
struct comm_timer* tm = (struct comm_timer*)arg;
if(!(event&EV_TIMEOUT))
return;
comm_base_now(tm->ev_timer->base);
tm->ev_timer->enabled = 0;
fptr_ok(fptr_whitelist_comm_timer(tm->callback));
(*tm->callback)(tm->cb_arg);
}
int
comm_timer_is_set(struct comm_timer* timer)
{
return (int)timer->ev_timer->enabled;
}
size_t
comm_timer_get_mem(struct comm_timer* timer)
{
return sizeof(*timer) + sizeof(struct internal_timer);
}
struct comm_signal*
comm_signal_create(struct comm_base* base,
void (*callback)(int, void*), void* cb_arg)
{
struct comm_signal* com = (struct comm_signal*)malloc(
sizeof(struct comm_signal));
if(!com) {
log_err("malloc failed");
return NULL;
}
com->base = base;
com->callback = callback;
com->cb_arg = cb_arg;
com->ev_signal = NULL;
return com;
}
void
comm_signal_callback(int sig, short event, void* arg)
{
struct comm_signal* comsig = (struct comm_signal*)arg;
if(!(event & EV_SIGNAL))
return;
comm_base_now(comsig->base);
fptr_ok(fptr_whitelist_comm_signal(comsig->callback));
(*comsig->callback)(sig, comsig->cb_arg);
}
int
comm_signal_bind(struct comm_signal* comsig, int sig)
{
struct internal_signal* entry = (struct internal_signal*)calloc(1,
sizeof(struct internal_signal));
if(!entry) {
log_err("malloc failed");
return 0;
}
log_assert(comsig);
/* add signal event */
signal_set(&entry->ev, sig, comm_signal_callback, comsig);
if(event_base_set(comsig->base->eb->base, &entry->ev) != 0) {
log_err("Could not set signal base");
free(entry);
return 0;
}
if(signal_add(&entry->ev, NULL) != 0) {
log_err("Could not add signal handler");
free(entry);
return 0;
}
/* link into list */
entry->next = comsig->ev_signal;
comsig->ev_signal = entry;
return 1;
}
void
comm_signal_delete(struct comm_signal* comsig)
{
struct internal_signal* p, *np;
if(!comsig)
return;
p=comsig->ev_signal;
while(p) {
np = p->next;
signal_del(&p->ev);
free(p);
p = np;
}
free(comsig);
}