wownero/src/crypto/skein.c

2037 lines
83 KiB
C

/***********************************************************************
**
** Implementation of the Skein hash function.
**
** Source code author: Doug Whiting, 2008.
**
** This algorithm and source code is released to the public domain.
**
************************************************************************/
#define SKEIN_PORT_CODE /* instantiate any code in skein_port.h */
#include <stddef.h> /* get size_t definition */
#include <string.h> /* get the memcpy/memset functions */
#include "skein.h" /* get the Skein API definitions */
#define DISABLE_UNUSED 0
#ifndef SKEIN_256_NIST_MAX_HASHBITS
#define SKEIN_256_NIST_MAX_HASHBITS (0)
#endif
#ifndef SKEIN_512_NIST_MAX_HASHBITS
#define SKEIN_512_NIST_MAX_HASHBITS (512)
#endif
#define SKEIN_MODIFIER_WORDS ( 2) /* number of modifier (tweak) words */
#define SKEIN_256_STATE_WORDS ( 4)
#define SKEIN_512_STATE_WORDS ( 8)
#define SKEIN1024_STATE_WORDS (16)
#define SKEIN_MAX_STATE_WORDS (16)
#define SKEIN_256_STATE_BYTES ( 8*SKEIN_256_STATE_WORDS)
#define SKEIN_512_STATE_BYTES ( 8*SKEIN_512_STATE_WORDS)
#define SKEIN1024_STATE_BYTES ( 8*SKEIN1024_STATE_WORDS)
#define SKEIN_256_STATE_BITS (64*SKEIN_256_STATE_WORDS)
#define SKEIN_512_STATE_BITS (64*SKEIN_512_STATE_WORDS)
#define SKEIN1024_STATE_BITS (64*SKEIN1024_STATE_WORDS)
#define SKEIN_256_BLOCK_BYTES ( 8*SKEIN_256_STATE_WORDS)
#define SKEIN_512_BLOCK_BYTES ( 8*SKEIN_512_STATE_WORDS)
#define SKEIN1024_BLOCK_BYTES ( 8*SKEIN1024_STATE_WORDS)
#define SKEIN_RND_SPECIAL (1000u)
#define SKEIN_RND_KEY_INITIAL (SKEIN_RND_SPECIAL+0u)
#define SKEIN_RND_KEY_INJECT (SKEIN_RND_SPECIAL+1u)
#define SKEIN_RND_FEED_FWD (SKEIN_RND_SPECIAL+2u)
typedef struct
{
size_t hashBitLen; /* size of hash result, in bits */
size_t bCnt; /* current byte count in buffer b[] */
u64b_t T[SKEIN_MODIFIER_WORDS]; /* tweak words: T[0]=byte cnt, T[1]=flags */
} Skein_Ctxt_Hdr_t;
typedef struct /* 256-bit Skein hash context structure */
{
Skein_Ctxt_Hdr_t h; /* common header context variables */
u64b_t X[SKEIN_256_STATE_WORDS]; /* chaining variables */
u08b_t b[SKEIN_256_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
} Skein_256_Ctxt_t;
typedef struct /* 512-bit Skein hash context structure */
{
Skein_Ctxt_Hdr_t h; /* common header context variables */
u64b_t X[SKEIN_512_STATE_WORDS]; /* chaining variables */
u08b_t b[SKEIN_512_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
} Skein_512_Ctxt_t;
typedef struct /* 1024-bit Skein hash context structure */
{
Skein_Ctxt_Hdr_t h; /* common header context variables */
u64b_t X[SKEIN1024_STATE_WORDS]; /* chaining variables */
u08b_t b[SKEIN1024_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
} Skein1024_Ctxt_t;
/* Skein APIs for (incremental) "straight hashing" */
#if SKEIN_256_NIST_MAX_HASHBITS
static int Skein_256_Init (Skein_256_Ctxt_t *ctx, size_t hashBitLen);
#endif
static int Skein_512_Init (Skein_512_Ctxt_t *ctx, size_t hashBitLen);
static int Skein1024_Init (Skein1024_Ctxt_t *ctx, size_t hashBitLen);
static int Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
static int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
static int Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
static int Skein_256_Final (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
static int Skein_512_Final (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
static int Skein1024_Final (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
/*
** Skein APIs for "extended" initialization: MAC keys, tree hashing.
** After an InitExt() call, just use Update/Final calls as with Init().
**
** Notes: Same parameters as _Init() calls, plus treeInfo/key/keyBytes.
** When keyBytes == 0 and treeInfo == SKEIN_SEQUENTIAL,
** the results of InitExt() are identical to calling Init().
** The function Init() may be called once to "precompute" the IV for
** a given hashBitLen value, then by saving a copy of the context
** the IV computation may be avoided in later calls.
** Similarly, the function InitExt() may be called once per MAC key
** to precompute the MAC IV, then a copy of the context saved and
** reused for each new MAC computation.
**/
#if 0
static int Skein_256_InitExt(Skein_256_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
static int Skein_512_InitExt(Skein_512_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
static int Skein1024_InitExt(Skein1024_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
#endif
/*
** Skein APIs for MAC and tree hash:
** Final_Pad: pad, do final block, but no OUTPUT type
** Output: do just the output stage
*/
#if 0
static int Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
static int Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
static int Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
#endif
#ifndef SKEIN_TREE_HASH
#define SKEIN_TREE_HASH (1)
#endif
#if 0
#if SKEIN_TREE_HASH
static int Skein_256_Output (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
static int Skein_512_Output (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
static int Skein1024_Output (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
#endif
#endif
/*****************************************************************
** "Internal" Skein definitions
** -- not needed for sequential hashing API, but will be
** helpful for other uses of Skein (e.g., tree hash mode).
** -- included here so that they can be shared between
** reference and optimized code.
******************************************************************/
/* tweak word T[1]: bit field starting positions */
#define SKEIN_T1_BIT(BIT) ((BIT) - 64) /* offset 64 because it's the second word */
#define SKEIN_T1_POS_TREE_LVL SKEIN_T1_BIT(112) /* bits 112..118: level in hash tree */
#define SKEIN_T1_POS_BIT_PAD SKEIN_T1_BIT(119) /* bit 119 : partial final input byte */
#define SKEIN_T1_POS_BLK_TYPE SKEIN_T1_BIT(120) /* bits 120..125: type field */
#define SKEIN_T1_POS_FIRST SKEIN_T1_BIT(126) /* bits 126 : first block flag */
#define SKEIN_T1_POS_FINAL SKEIN_T1_BIT(127) /* bit 127 : final block flag */
/* tweak word T[1]: flag bit definition(s) */
#define SKEIN_T1_FLAG_FIRST (((u64b_t) 1 ) << SKEIN_T1_POS_FIRST)
#define SKEIN_T1_FLAG_FINAL (((u64b_t) 1 ) << SKEIN_T1_POS_FINAL)
#define SKEIN_T1_FLAG_BIT_PAD (((u64b_t) 1 ) << SKEIN_T1_POS_BIT_PAD)
/* tweak word T[1]: tree level bit field mask */
#define SKEIN_T1_TREE_LVL_MASK (((u64b_t)0x7F) << SKEIN_T1_POS_TREE_LVL)
#define SKEIN_T1_TREE_LEVEL(n) (((u64b_t) (n)) << SKEIN_T1_POS_TREE_LVL)
/* tweak word T[1]: block type field */
#define SKEIN_BLK_TYPE_KEY ( 0) /* key, for MAC and KDF */
#define SKEIN_BLK_TYPE_CFG ( 4) /* configuration block */
#define SKEIN_BLK_TYPE_PERS ( 8) /* personalization string */
#define SKEIN_BLK_TYPE_PK (12) /* public key (for digital signature hashing) */
#define SKEIN_BLK_TYPE_KDF (16) /* key identifier for KDF */
#define SKEIN_BLK_TYPE_NONCE (20) /* nonce for PRNG */
#define SKEIN_BLK_TYPE_MSG (48) /* message processing */
#define SKEIN_BLK_TYPE_OUT (63) /* output stage */
#define SKEIN_BLK_TYPE_MASK (63) /* bit field mask */
#define SKEIN_T1_BLK_TYPE(T) (((u64b_t) (SKEIN_BLK_TYPE_##T)) << SKEIN_T1_POS_BLK_TYPE)
#define SKEIN_T1_BLK_TYPE_KEY SKEIN_T1_BLK_TYPE(KEY) /* key, for MAC and KDF */
#define SKEIN_T1_BLK_TYPE_CFG SKEIN_T1_BLK_TYPE(CFG) /* configuration block */
#define SKEIN_T1_BLK_TYPE_PERS SKEIN_T1_BLK_TYPE(PERS) /* personalization string */
#define SKEIN_T1_BLK_TYPE_PK SKEIN_T1_BLK_TYPE(PK) /* public key (for digital signature hashing) */
#define SKEIN_T1_BLK_TYPE_KDF SKEIN_T1_BLK_TYPE(KDF) /* key identifier for KDF */
#define SKEIN_T1_BLK_TYPE_NONCE SKEIN_T1_BLK_TYPE(NONCE)/* nonce for PRNG */
#define SKEIN_T1_BLK_TYPE_MSG SKEIN_T1_BLK_TYPE(MSG) /* message processing */
#define SKEIN_T1_BLK_TYPE_OUT SKEIN_T1_BLK_TYPE(OUT) /* output stage */
#define SKEIN_T1_BLK_TYPE_MASK SKEIN_T1_BLK_TYPE(MASK) /* field bit mask */
#define SKEIN_T1_BLK_TYPE_CFG_FINAL (SKEIN_T1_BLK_TYPE_CFG | SKEIN_T1_FLAG_FINAL)
#define SKEIN_T1_BLK_TYPE_OUT_FINAL (SKEIN_T1_BLK_TYPE_OUT | SKEIN_T1_FLAG_FINAL)
#define SKEIN_VERSION (1)
#ifndef SKEIN_ID_STRING_LE /* allow compile-time personalization */
#define SKEIN_ID_STRING_LE (0x33414853) /* "SHA3" (little-endian)*/
#endif
#define SKEIN_MK_64(hi32,lo32) ((lo32) + (((u64b_t) (hi32)) << 32))
#define SKEIN_SCHEMA_VER SKEIN_MK_64(SKEIN_VERSION,SKEIN_ID_STRING_LE)
#define SKEIN_KS_PARITY SKEIN_MK_64(0x1BD11BDA,0xA9FC1A22)
#define SKEIN_CFG_STR_LEN (4*8)
/* bit field definitions in config block treeInfo word */
#define SKEIN_CFG_TREE_LEAF_SIZE_POS ( 0)
#define SKEIN_CFG_TREE_NODE_SIZE_POS ( 8)
#define SKEIN_CFG_TREE_MAX_LEVEL_POS (16)
#define SKEIN_CFG_TREE_LEAF_SIZE_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_LEAF_SIZE_POS)
#define SKEIN_CFG_TREE_NODE_SIZE_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_NODE_SIZE_POS)
#define SKEIN_CFG_TREE_MAX_LEVEL_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_MAX_LEVEL_POS)
#define SKEIN_CFG_TREE_INFO(leaf,node,maxLvl) \
( (((u64b_t)(leaf )) << SKEIN_CFG_TREE_LEAF_SIZE_POS) | \
(((u64b_t)(node )) << SKEIN_CFG_TREE_NODE_SIZE_POS) | \
(((u64b_t)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS) )
#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0,0,0) /* use as treeInfo in InitExt() call for sequential processing */
/*
** Skein macros for getting/setting tweak words, etc.
** These are useful for partial input bytes, hash tree init/update, etc.
**/
#define Skein_Get_Tweak(ctxPtr,TWK_NUM) ((ctxPtr)->h.T[TWK_NUM])
#define Skein_Set_Tweak(ctxPtr,TWK_NUM,tVal) {(ctxPtr)->h.T[TWK_NUM] = (tVal);}
#define Skein_Get_T0(ctxPtr) Skein_Get_Tweak(ctxPtr,0)
#define Skein_Get_T1(ctxPtr) Skein_Get_Tweak(ctxPtr,1)
#define Skein_Set_T0(ctxPtr,T0) Skein_Set_Tweak(ctxPtr,0,T0)
#define Skein_Set_T1(ctxPtr,T1) Skein_Set_Tweak(ctxPtr,1,T1)
/* set both tweak words at once */
#define Skein_Set_T0_T1(ctxPtr,T0,T1) \
{ \
Skein_Set_T0(ctxPtr,(T0)); \
Skein_Set_T1(ctxPtr,(T1)); \
}
#define Skein_Set_Type(ctxPtr,BLK_TYPE) \
Skein_Set_T1(ctxPtr,SKEIN_T1_BLK_TYPE_##BLK_TYPE)
/* set up for starting with a new type: h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0; */
#define Skein_Start_New_Type(ctxPtr,BLK_TYPE) \
{ Skein_Set_T0_T1(ctxPtr,0,SKEIN_T1_FLAG_FIRST | SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt=0; }
#define Skein_Clear_First_Flag(hdr) { (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST; }
#define Skein_Set_Bit_Pad_Flag(hdr) { (hdr).T[1] |= SKEIN_T1_FLAG_BIT_PAD; }
#define Skein_Set_Tree_Level(hdr,height) { (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height);}
/*****************************************************************
** "Internal" Skein definitions for debugging and error checking
******************************************************************/
#define Skein_Show_Block(bits,ctx,X,blkPtr,wPtr,ksEvenPtr,ksOddPtr)
#define Skein_Show_Round(bits,ctx,r,X)
#define Skein_Show_R_Ptr(bits,ctx,r,X_ptr)
#define Skein_Show_Final(bits,ctx,cnt,outPtr)
#define Skein_Show_Key(bits,ctx,key,keyBytes)
#ifndef SKEIN_ERR_CHECK /* run-time checks (e.g., bad params, uninitialized context)? */
#define Skein_Assert(x,retCode)/* default: ignore all Asserts, for performance */
#define Skein_assert(x)
#elif defined(SKEIN_ASSERT)
#include <assert.h>
#define Skein_Assert(x,retCode) assert(x)
#define Skein_assert(x) assert(x)
#else
#include <assert.h>
#define Skein_Assert(x,retCode) { if (!(x)) return retCode; } /* caller error */
#define Skein_assert(x) assert(x) /* internal error */
#endif
/*****************************************************************
** Skein block function constants (shared across Ref and Opt code)
******************************************************************/
enum
{
/* Skein_256 round rotation constants */
R_256_0_0=14, R_256_0_1=16,
R_256_1_0=52, R_256_1_1=57,
R_256_2_0=23, R_256_2_1=40,
R_256_3_0= 5, R_256_3_1=37,
R_256_4_0=25, R_256_4_1=33,
R_256_5_0=46, R_256_5_1=12,
R_256_6_0=58, R_256_6_1=22,
R_256_7_0=32, R_256_7_1=32,
/* Skein_512 round rotation constants */
R_512_0_0=46, R_512_0_1=36, R_512_0_2=19, R_512_0_3=37,
R_512_1_0=33, R_512_1_1=27, R_512_1_2=14, R_512_1_3=42,
R_512_2_0=17, R_512_2_1=49, R_512_2_2=36, R_512_2_3=39,
R_512_3_0=44, R_512_3_1= 9, R_512_3_2=54, R_512_3_3=56,
R_512_4_0=39, R_512_4_1=30, R_512_4_2=34, R_512_4_3=24,
R_512_5_0=13, R_512_5_1=50, R_512_5_2=10, R_512_5_3=17,
R_512_6_0=25, R_512_6_1=29, R_512_6_2=39, R_512_6_3=43,
R_512_7_0= 8, R_512_7_1=35, R_512_7_2=56, R_512_7_3=22,
/* Skein1024 round rotation constants */
R1024_0_0=24, R1024_0_1=13, R1024_0_2= 8, R1024_0_3=47, R1024_0_4= 8, R1024_0_5=17, R1024_0_6=22, R1024_0_7=37,
R1024_1_0=38, R1024_1_1=19, R1024_1_2=10, R1024_1_3=55, R1024_1_4=49, R1024_1_5=18, R1024_1_6=23, R1024_1_7=52,
R1024_2_0=33, R1024_2_1= 4, R1024_2_2=51, R1024_2_3=13, R1024_2_4=34, R1024_2_5=41, R1024_2_6=59, R1024_2_7=17,
R1024_3_0= 5, R1024_3_1=20, R1024_3_2=48, R1024_3_3=41, R1024_3_4=47, R1024_3_5=28, R1024_3_6=16, R1024_3_7=25,
R1024_4_0=41, R1024_4_1= 9, R1024_4_2=37, R1024_4_3=31, R1024_4_4=12, R1024_4_5=47, R1024_4_6=44, R1024_4_7=30,
R1024_5_0=16, R1024_5_1=34, R1024_5_2=56, R1024_5_3=51, R1024_5_4= 4, R1024_5_5=53, R1024_5_6=42, R1024_5_7=41,
R1024_6_0=31, R1024_6_1=44, R1024_6_2=47, R1024_6_3=46, R1024_6_4=19, R1024_6_5=42, R1024_6_6=44, R1024_6_7=25,
R1024_7_0= 9, R1024_7_1=48, R1024_7_2=35, R1024_7_3=52, R1024_7_4=23, R1024_7_5=31, R1024_7_6=37, R1024_7_7=20
};
#ifndef SKEIN_ROUNDS
#define SKEIN_256_ROUNDS_TOTAL (72) /* number of rounds for the different block sizes */
#define SKEIN_512_ROUNDS_TOTAL (72)
#define SKEIN1024_ROUNDS_TOTAL (80)
#else /* allow command-line define in range 8*(5..14) */
#define SKEIN_256_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/100) + 5) % 10) + 5))
#define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/ 10) + 5) % 10) + 5))
#define SKEIN1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS ) + 5) % 10) + 5))
#endif
/*
***************** Pre-computed Skein IVs *******************
**
** NOTE: these values are not "magic" constants, but
** are generated using the Threefish block function.
** They are pre-computed here only for speed; i.e., to
** avoid the need for a Threefish call during Init().
**
** The IV for any fixed hash length may be pre-computed.
** Only the most common values are included here.
**
************************************************************
**/
#define MK_64 SKEIN_MK_64
/* blkSize = 256 bits. hashSize = 128 bits */
const u64b_t SKEIN_256_IV_128[] =
{
MK_64(0xE1111906,0x964D7260),
MK_64(0x883DAAA7,0x7C8D811C),
MK_64(0x10080DF4,0x91960F7A),
MK_64(0xCCF7DDE5,0xB45BC1C2)
};
/* blkSize = 256 bits. hashSize = 160 bits */
const u64b_t SKEIN_256_IV_160[] =
{
MK_64(0x14202314,0x72825E98),
MK_64(0x2AC4E9A2,0x5A77E590),
MK_64(0xD47A5856,0x8838D63E),
MK_64(0x2DD2E496,0x8586AB7D)
};
/* blkSize = 256 bits. hashSize = 224 bits */
const u64b_t SKEIN_256_IV_224[] =
{
MK_64(0xC6098A8C,0x9AE5EA0B),
MK_64(0x876D5686,0x08C5191C),
MK_64(0x99CB88D7,0xD7F53884),
MK_64(0x384BDDB1,0xAEDDB5DE)
};
/* blkSize = 256 bits. hashSize = 256 bits */
const u64b_t SKEIN_256_IV_256[] =
{
MK_64(0xFC9DA860,0xD048B449),
MK_64(0x2FCA6647,0x9FA7D833),
MK_64(0xB33BC389,0x6656840F),
MK_64(0x6A54E920,0xFDE8DA69)
};
/* blkSize = 512 bits. hashSize = 128 bits */
const u64b_t SKEIN_512_IV_128[] =
{
MK_64(0xA8BC7BF3,0x6FBF9F52),
MK_64(0x1E9872CE,0xBD1AF0AA),
MK_64(0x309B1790,0xB32190D3),
MK_64(0xBCFBB854,0x3F94805C),
MK_64(0x0DA61BCD,0x6E31B11B),
MK_64(0x1A18EBEA,0xD46A32E3),
MK_64(0xA2CC5B18,0xCE84AA82),
MK_64(0x6982AB28,0x9D46982D)
};
/* blkSize = 512 bits. hashSize = 160 bits */
const u64b_t SKEIN_512_IV_160[] =
{
MK_64(0x28B81A2A,0xE013BD91),
MK_64(0xC2F11668,0xB5BDF78F),
MK_64(0x1760D8F3,0xF6A56F12),
MK_64(0x4FB74758,0x8239904F),
MK_64(0x21EDE07F,0x7EAF5056),
MK_64(0xD908922E,0x63ED70B8),
MK_64(0xB8EC76FF,0xECCB52FA),
MK_64(0x01A47BB8,0xA3F27A6E)
};
/* blkSize = 512 bits. hashSize = 224 bits */
const u64b_t SKEIN_512_IV_224[] =
{
MK_64(0xCCD06162,0x48677224),
MK_64(0xCBA65CF3,0xA92339EF),
MK_64(0x8CCD69D6,0x52FF4B64),
MK_64(0x398AED7B,0x3AB890B4),
MK_64(0x0F59D1B1,0x457D2BD0),
MK_64(0x6776FE65,0x75D4EB3D),
MK_64(0x99FBC70E,0x997413E9),
MK_64(0x9E2CFCCF,0xE1C41EF7)
};
/* blkSize = 512 bits. hashSize = 256 bits */
const u64b_t SKEIN_512_IV_256[] =
{
MK_64(0xCCD044A1,0x2FDB3E13),
MK_64(0xE8359030,0x1A79A9EB),
MK_64(0x55AEA061,0x4F816E6F),
MK_64(0x2A2767A4,0xAE9B94DB),
MK_64(0xEC06025E,0x74DD7683),
MK_64(0xE7A436CD,0xC4746251),
MK_64(0xC36FBAF9,0x393AD185),
MK_64(0x3EEDBA18,0x33EDFC13)
};
/* blkSize = 512 bits. hashSize = 384 bits */
const u64b_t SKEIN_512_IV_384[] =
{
MK_64(0xA3F6C6BF,0x3A75EF5F),
MK_64(0xB0FEF9CC,0xFD84FAA4),
MK_64(0x9D77DD66,0x3D770CFE),
MK_64(0xD798CBF3,0xB468FDDA),
MK_64(0x1BC4A666,0x8A0E4465),
MK_64(0x7ED7D434,0xE5807407),
MK_64(0x548FC1AC,0xD4EC44D6),
MK_64(0x266E1754,0x6AA18FF8)
};
/* blkSize = 512 bits. hashSize = 512 bits */
const u64b_t SKEIN_512_IV_512[] =
{
MK_64(0x4903ADFF,0x749C51CE),
MK_64(0x0D95DE39,0x9746DF03),
MK_64(0x8FD19341,0x27C79BCE),
MK_64(0x9A255629,0xFF352CB1),
MK_64(0x5DB62599,0xDF6CA7B0),
MK_64(0xEABE394C,0xA9D5C3F4),
MK_64(0x991112C7,0x1A75B523),
MK_64(0xAE18A40B,0x660FCC33)
};
/* blkSize = 1024 bits. hashSize = 384 bits */
const u64b_t SKEIN1024_IV_384[] =
{
MK_64(0x5102B6B8,0xC1894A35),
MK_64(0xFEEBC9E3,0xFE8AF11A),
MK_64(0x0C807F06,0xE32BED71),
MK_64(0x60C13A52,0xB41A91F6),
MK_64(0x9716D35D,0xD4917C38),
MK_64(0xE780DF12,0x6FD31D3A),
MK_64(0x797846B6,0xC898303A),
MK_64(0xB172C2A8,0xB3572A3B),
MK_64(0xC9BC8203,0xA6104A6C),
MK_64(0x65909338,0xD75624F4),
MK_64(0x94BCC568,0x4B3F81A0),
MK_64(0x3EBBF51E,0x10ECFD46),
MK_64(0x2DF50F0B,0xEEB08542),
MK_64(0x3B5A6530,0x0DBC6516),
MK_64(0x484B9CD2,0x167BBCE1),
MK_64(0x2D136947,0xD4CBAFEA)
};
/* blkSize = 1024 bits. hashSize = 512 bits */
const u64b_t SKEIN1024_IV_512[] =
{
MK_64(0xCAEC0E5D,0x7C1B1B18),
MK_64(0xA01B0E04,0x5F03E802),
MK_64(0x33840451,0xED912885),
MK_64(0x374AFB04,0xEAEC2E1C),
MK_64(0xDF25A0E2,0x813581F7),
MK_64(0xE4004093,0x8B12F9D2),
MK_64(0xA662D539,0xC2ED39B6),
MK_64(0xFA8B85CF,0x45D8C75A),
MK_64(0x8316ED8E,0x29EDE796),
MK_64(0x053289C0,0x2E9F91B8),
MK_64(0xC3F8EF1D,0x6D518B73),
MK_64(0xBDCEC3C4,0xD5EF332E),
MK_64(0x549A7E52,0x22974487),
MK_64(0x67070872,0x5B749816),
MK_64(0xB9CD28FB,0xF0581BD1),
MK_64(0x0E2940B8,0x15804974)
};
/* blkSize = 1024 bits. hashSize = 1024 bits */
const u64b_t SKEIN1024_IV_1024[] =
{
MK_64(0xD593DA07,0x41E72355),
MK_64(0x15B5E511,0xAC73E00C),
MK_64(0x5180E5AE,0xBAF2C4F0),
MK_64(0x03BD41D3,0xFCBCAFAF),
MK_64(0x1CAEC6FD,0x1983A898),
MK_64(0x6E510B8B,0xCDD0589F),
MK_64(0x77E2BDFD,0xC6394ADA),
MK_64(0xC11E1DB5,0x24DCB0A3),
MK_64(0xD6D14AF9,0xC6329AB5),
MK_64(0x6A9B0BFC,0x6EB67E0D),
MK_64(0x9243C60D,0xCCFF1332),
MK_64(0x1A1F1DDE,0x743F02D4),
MK_64(0x0996753C,0x10ED0BB8),
MK_64(0x6572DD22,0xF2B4969A),
MK_64(0x61FD3062,0xD00A579A),
MK_64(0x1DE0536E,0x8682E539)
};
#ifndef SKEIN_USE_ASM
#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
#endif
#ifndef SKEIN_LOOP
#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
#endif
#define BLK_BITS (WCNT*64) /* some useful definitions for code here */
#define KW_TWK_BASE (0)
#define KW_KEY_BASE (3)
#define ks (kw + KW_KEY_BASE)
#define ts (kw + KW_TWK_BASE)
#ifdef SKEIN_DEBUG
#define DebugSaveTweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; }
#else
#define DebugSaveTweak(ctx)
#endif
/***************************** Skein_256 ******************************/
#if !(SKEIN_USE_ASM & 256)
static void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
{ /* do it in C */
enum
{
WCNT = SKEIN_256_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN_256_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)
#else
#define SKEIN_UNROLL_256 (0)
#endif
#if SKEIN_UNROLL_256
#if (RCNT % SKEIN_UNROLL_256)
#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
#endif
size_t r;
u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
#else
u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64b_t X0,X1,X2,X3; /* local copy of context vars, for speed */
u64b_t w [WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64b_t *Xptr[4]; /* use for debugging (help compiler put Xn in registers) */
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/* this implementation only supports 2**64 input bytes (no carry out here) */
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ks[1] = ctx->X[1];
ks[2] = ctx->X[2];
ks[3] = ctx->X[3];
ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1] + ts[0];
X2 = w[2] + ks[2] + ts[1];
X3 = w[3] + ks[3];
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr); /* show starting state values */
blkPtr += SKEIN_256_BLOCK_BYTES;
/* run the rounds */
#define Round256(p0,p1,p2,p3,ROT,rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
#if SKEIN_UNROLL_256 == 0
#define R256(p0,p1,p2,p3,ROT,rNum) /* fully unrolled */ \
Round256(p0,p1,p2,p3,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
#define I256(R) \
X0 += ks[((R)+1) % 5]; /* inject the key schedule value */ \
X1 += ks[((R)+2) % 5] + ts[((R)+1) % 3]; \
X2 += ks[((R)+3) % 5] + ts[((R)+2) % 3]; \
X3 += ks[((R)+4) % 5] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
#else /* looping version */
#define R256(p0,p1,p2,p3,ROT,rNum) \
Round256(p0,p1,p2,p3,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
#define I256(R) \
X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
X1 += ks[r+(R)+1] + ts[r+(R)+0]; \
X2 += ks[r+(R)+2] + ts[r+(R)+1]; \
X3 += ks[r+(R)+3] + r+(R) ; \
ks[r + (R)+4 ] = ks[r+(R)-1]; /* rotate key schedule */\
ts[r + (R)+2 ] = ts[r+(R)-1]; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_256) /* loop thru it */
#endif
{
#define R256_8_rounds(R) \
R256(0,1,2,3,R_256_0,8*(R) + 1); \
R256(0,3,2,1,R_256_1,8*(R) + 2); \
R256(0,1,2,3,R_256_2,8*(R) + 3); \
R256(0,3,2,1,R_256_3,8*(R) + 4); \
I256(2*(R)); \
R256(0,1,2,3,R_256_4,8*(R) + 5); \
R256(0,3,2,1,R_256_5,8*(R) + 6); \
R256(0,1,2,3,R_256_6,8*(R) + 7); \
R256(0,3,2,1,R_256_7,8*(R) + 8); \
I256(2*(R)+1);
R256_8_rounds( 0);
#define R256_Unroll_R(NN) ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_256 > (NN)))
#if R256_Unroll_R( 1)
R256_8_rounds( 1);
#endif
#if R256_Unroll_R( 2)
R256_8_rounds( 2);
#endif
#if R256_Unroll_R( 3)
R256_8_rounds( 3);
#endif
#if R256_Unroll_R( 4)
R256_8_rounds( 4);
#endif
#if R256_Unroll_R( 5)
R256_8_rounds( 5);
#endif
#if R256_Unroll_R( 6)
R256_8_rounds( 6);
#endif
#if R256_Unroll_R( 7)
R256_8_rounds( 7);
#endif
#if R256_Unroll_R( 8)
R256_8_rounds( 8);
#endif
#if R256_Unroll_R( 9)
R256_8_rounds( 9);
#endif
#if R256_Unroll_R(10)
R256_8_rounds(10);
#endif
#if R256_Unroll_R(11)
R256_8_rounds(11);
#endif
#if R256_Unroll_R(12)
R256_8_rounds(12);
#endif
#if R256_Unroll_R(13)
R256_8_rounds(13);
#endif
#if R256_Unroll_R(14)
R256_8_rounds(14);
#endif
#if (SKEIN_UNROLL_256 > 14)
#error "need more unrolling in Skein_256_Process_Block"
#endif
}
/* do the final "feedforward" xor, update context chaining vars */
ctx->X[0] = X0 ^ w[0];
ctx->X[1] = X1 ^ w[1];
ctx->X[2] = X2 ^ w[2];
ctx->X[3] = X3 ^ w[3];
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
}
while (--blkCnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
static size_t Skein_256_Process_Block_CodeSize(void)
{
return ((u08b_t *) Skein_256_Process_Block_CodeSize) -
((u08b_t *) Skein_256_Process_Block);
}
static uint_t Skein_256_Unroll_Cnt(void)
{
return SKEIN_UNROLL_256;
}
#endif
#endif
/***************************** Skein_512 ******************************/
#if !(SKEIN_USE_ASM & 512)
static void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
{ /* do it in C */
enum
{
WCNT = SKEIN_512_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN_512_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
#else
#define SKEIN_UNROLL_512 (0)
#endif
#if SKEIN_UNROLL_512
#if (RCNT % SKEIN_UNROLL_512)
#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
#endif
size_t r;
u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
#else
u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64b_t X0,X1,X2,X3,X4,X5,X6,X7; /* local copy of vars, for speed */
u64b_t w [WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64b_t *Xptr[8]; /* use for debugging (help compiler put Xn in registers) */
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
Xptr[4] = &X4; Xptr[5] = &X5; Xptr[6] = &X6; Xptr[7] = &X7;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/* this implementation only supports 2**64 input bytes (no carry out here) */
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ks[1] = ctx->X[1];
ks[2] = ctx->X[2];
ks[3] = ctx->X[3];
ks[4] = ctx->X[4];
ks[5] = ctx->X[5];
ks[6] = ctx->X[6];
ks[7] = ctx->X[7];
ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1];
X2 = w[2] + ks[2];
X3 = w[3] + ks[3];
X4 = w[4] + ks[4];
X5 = w[5] + ks[5] + ts[0];
X6 = w[6] + ks[6] + ts[1];
X7 = w[7] + ks[7];
blkPtr += SKEIN_512_BLOCK_BYTES;
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
/* run the rounds */
#define Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
#if SKEIN_UNROLL_512 == 0
#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) /* unrolled */ \
Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
#define I512(R) \
X0 += ks[((R)+1) % 9]; /* inject the key schedule value */ \
X1 += ks[((R)+2) % 9]; \
X2 += ks[((R)+3) % 9]; \
X3 += ks[((R)+4) % 9]; \
X4 += ks[((R)+5) % 9]; \
X5 += ks[((R)+6) % 9] + ts[((R)+1) % 3]; \
X6 += ks[((R)+7) % 9] + ts[((R)+2) % 3]; \
X7 += ks[((R)+8) % 9] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
#else /* looping version */
#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
#define I512(R) \
X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
X1 += ks[r+(R)+1]; \
X2 += ks[r+(R)+2]; \
X3 += ks[r+(R)+3]; \
X4 += ks[r+(R)+4]; \
X5 += ks[r+(R)+5] + ts[r+(R)+0]; \
X6 += ks[r+(R)+6] + ts[r+(R)+1]; \
X7 += ks[r+(R)+7] + r+(R) ; \
ks[r + (R)+8] = ks[r+(R)-1]; /* rotate key schedule */ \
ts[r + (R)+2] = ts[r+(R)-1]; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_512) /* loop thru it */
#endif /* end of looped code definitions */
{
#define R512_8_rounds(R) /* do 8 full rounds */ \
R512(0,1,2,3,4,5,6,7,R_512_0,8*(R)+ 1); \
R512(2,1,4,7,6,5,0,3,R_512_1,8*(R)+ 2); \
R512(4,1,6,3,0,5,2,7,R_512_2,8*(R)+ 3); \
R512(6,1,0,7,2,5,4,3,R_512_3,8*(R)+ 4); \
I512(2*(R)); \
R512(0,1,2,3,4,5,6,7,R_512_4,8*(R)+ 5); \
R512(2,1,4,7,6,5,0,3,R_512_5,8*(R)+ 6); \
R512(4,1,6,3,0,5,2,7,R_512_6,8*(R)+ 7); \
R512(6,1,0,7,2,5,4,3,R_512_7,8*(R)+ 8); \
I512(2*(R)+1); /* and key injection */
R512_8_rounds( 0);
#define R512_Unroll_R(NN) ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_512 > (NN)))
#if R512_Unroll_R( 1)
R512_8_rounds( 1);
#endif
#if R512_Unroll_R( 2)
R512_8_rounds( 2);
#endif
#if R512_Unroll_R( 3)
R512_8_rounds( 3);
#endif
#if R512_Unroll_R( 4)
R512_8_rounds( 4);
#endif
#if R512_Unroll_R( 5)
R512_8_rounds( 5);
#endif
#if R512_Unroll_R( 6)
R512_8_rounds( 6);
#endif
#if R512_Unroll_R( 7)
R512_8_rounds( 7);
#endif
#if R512_Unroll_R( 8)
R512_8_rounds( 8);
#endif
#if R512_Unroll_R( 9)
R512_8_rounds( 9);
#endif
#if R512_Unroll_R(10)
R512_8_rounds(10);
#endif
#if R512_Unroll_R(11)
R512_8_rounds(11);
#endif
#if R512_Unroll_R(12)
R512_8_rounds(12);
#endif
#if R512_Unroll_R(13)
R512_8_rounds(13);
#endif
#if R512_Unroll_R(14)
R512_8_rounds(14);
#endif
#if (SKEIN_UNROLL_512 > 14)
#error "need more unrolling in Skein_512_Process_Block"
#endif
}
/* do the final "feedforward" xor, update context chaining vars */
ctx->X[0] = X0 ^ w[0];
ctx->X[1] = X1 ^ w[1];
ctx->X[2] = X2 ^ w[2];
ctx->X[3] = X3 ^ w[3];
ctx->X[4] = X4 ^ w[4];
ctx->X[5] = X5 ^ w[5];
ctx->X[6] = X6 ^ w[6];
ctx->X[7] = X7 ^ w[7];
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
}
while (--blkCnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
static size_t Skein_512_Process_Block_CodeSize(void)
{
return ((u08b_t *) Skein_512_Process_Block_CodeSize) -
((u08b_t *) Skein_512_Process_Block);
}
static uint_t Skein_512_Unroll_Cnt(void)
{
return SKEIN_UNROLL_512;
}
#endif
#endif
/***************************** Skein1024 ******************************/
#if !(SKEIN_USE_ASM & 1024)
static void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
{ /* do it in C, always looping (unrolled is bigger AND slower!) */
enum
{
WCNT = SKEIN1024_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
#else
#define SKEIN_UNROLL_1024 (0)
#endif
#if (SKEIN_UNROLL_1024 != 0)
#if (RCNT % SKEIN_UNROLL_1024)
#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
#endif
size_t r;
u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
#else
u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64b_t X00,X01,X02,X03,X04,X05,X06,X07, /* local copy of vars, for speed */
X08,X09,X10,X11,X12,X13,X14,X15;
u64b_t w [WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64b_t *Xptr[16]; /* use for debugging (help compiler put Xn in registers) */
Xptr[ 0] = &X00; Xptr[ 1] = &X01; Xptr[ 2] = &X02; Xptr[ 3] = &X03;
Xptr[ 4] = &X04; Xptr[ 5] = &X05; Xptr[ 6] = &X06; Xptr[ 7] = &X07;
Xptr[ 8] = &X08; Xptr[ 9] = &X09; Xptr[10] = &X10; Xptr[11] = &X11;
Xptr[12] = &X12; Xptr[13] = &X13; Xptr[14] = &X14; Xptr[15] = &X15;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/* this implementation only supports 2**64 input bytes (no carry out here) */
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[ 0] = ctx->X[ 0];
ks[ 1] = ctx->X[ 1];
ks[ 2] = ctx->X[ 2];
ks[ 3] = ctx->X[ 3];
ks[ 4] = ctx->X[ 4];
ks[ 5] = ctx->X[ 5];
ks[ 6] = ctx->X[ 6];
ks[ 7] = ctx->X[ 7];
ks[ 8] = ctx->X[ 8];
ks[ 9] = ctx->X[ 9];
ks[10] = ctx->X[10];
ks[11] = ctx->X[11];
ks[12] = ctx->X[12];
ks[13] = ctx->X[13];
ks[14] = ctx->X[14];
ks[15] = ctx->X[15];
ks[16] = ks[ 0] ^ ks[ 1] ^ ks[ 2] ^ ks[ 3] ^
ks[ 4] ^ ks[ 5] ^ ks[ 6] ^ ks[ 7] ^
ks[ 8] ^ ks[ 9] ^ ks[10] ^ ks[11] ^
ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
X00 = w[ 0] + ks[ 0]; /* do the first full key injection */
X01 = w[ 1] + ks[ 1];
X02 = w[ 2] + ks[ 2];
X03 = w[ 3] + ks[ 3];
X04 = w[ 4] + ks[ 4];
X05 = w[ 5] + ks[ 5];
X06 = w[ 6] + ks[ 6];
X07 = w[ 7] + ks[ 7];
X08 = w[ 8] + ks[ 8];
X09 = w[ 9] + ks[ 9];
X10 = w[10] + ks[10];
X11 = w[11] + ks[11];
X12 = w[12] + ks[12];
X13 = w[13] + ks[13] + ts[0];
X14 = w[14] + ks[14] + ts[1];
X15 = w[15] + ks[15];
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
#define Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
X##p8 += X##p9; X##p9 = RotL_64(X##p9,ROT##_4); X##p9 ^= X##p8; \
X##pA += X##pB; X##pB = RotL_64(X##pB,ROT##_5); X##pB ^= X##pA; \
X##pC += X##pD; X##pD = RotL_64(X##pD,ROT##_6); X##pD ^= X##pC; \
X##pE += X##pF; X##pF = RotL_64(X##pF,ROT##_7); X##pF ^= X##pE; \
#if SKEIN_UNROLL_1024 == 0
#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rn,Xptr);
#define I1024(R) \
X00 += ks[((R)+ 1) % 17]; /* inject the key schedule value */ \
X01 += ks[((R)+ 2) % 17]; \
X02 += ks[((R)+ 3) % 17]; \
X03 += ks[((R)+ 4) % 17]; \
X04 += ks[((R)+ 5) % 17]; \
X05 += ks[((R)+ 6) % 17]; \
X06 += ks[((R)+ 7) % 17]; \
X07 += ks[((R)+ 8) % 17]; \
X08 += ks[((R)+ 9) % 17]; \
X09 += ks[((R)+10) % 17]; \
X10 += ks[((R)+11) % 17]; \
X11 += ks[((R)+12) % 17]; \
X12 += ks[((R)+13) % 17]; \
X13 += ks[((R)+14) % 17] + ts[((R)+1) % 3]; \
X14 += ks[((R)+15) % 17] + ts[((R)+2) % 3]; \
X15 += ks[((R)+16) % 17] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
#else /* looping version */
#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rn,Xptr);
#define I1024(R) \
X00 += ks[r+(R)+ 0]; /* inject the key schedule value */ \
X01 += ks[r+(R)+ 1]; \
X02 += ks[r+(R)+ 2]; \
X03 += ks[r+(R)+ 3]; \
X04 += ks[r+(R)+ 4]; \
X05 += ks[r+(R)+ 5]; \
X06 += ks[r+(R)+ 6]; \
X07 += ks[r+(R)+ 7]; \
X08 += ks[r+(R)+ 8]; \
X09 += ks[r+(R)+ 9]; \
X10 += ks[r+(R)+10]; \
X11 += ks[r+(R)+11]; \
X12 += ks[r+(R)+12]; \
X13 += ks[r+(R)+13] + ts[r+(R)+0]; \
X14 += ks[r+(R)+14] + ts[r+(R)+1]; \
X15 += ks[r+(R)+15] + r+(R) ; \
ks[r + (R)+16] = ks[r+(R)-1]; /* rotate key schedule */ \
ts[r + (R)+ 2] = ts[r+(R)-1]; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
for (r=1;r <= 2*RCNT;r+=2*SKEIN_UNROLL_1024) /* loop thru it */
#endif
{
#define R1024_8_rounds(R) /* do 8 full rounds */ \
R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_0,8*(R) + 1); \
R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_1,8*(R) + 2); \
R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_2,8*(R) + 3); \
R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_3,8*(R) + 4); \
I1024(2*(R)); \
R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_4,8*(R) + 5); \
R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_5,8*(R) + 6); \
R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_6,8*(R) + 7); \
R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_7,8*(R) + 8); \
I1024(2*(R)+1);
R1024_8_rounds( 0);
#define R1024_Unroll_R(NN) ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_1024 > (NN)))
#if R1024_Unroll_R( 1)
R1024_8_rounds( 1);
#endif
#if R1024_Unroll_R( 2)
R1024_8_rounds( 2);
#endif
#if R1024_Unroll_R( 3)
R1024_8_rounds( 3);
#endif
#if R1024_Unroll_R( 4)
R1024_8_rounds( 4);
#endif
#if R1024_Unroll_R( 5)
R1024_8_rounds( 5);
#endif
#if R1024_Unroll_R( 6)
R1024_8_rounds( 6);
#endif
#if R1024_Unroll_R( 7)
R1024_8_rounds( 7);
#endif
#if R1024_Unroll_R( 8)
R1024_8_rounds( 8);
#endif
#if R1024_Unroll_R( 9)
R1024_8_rounds( 9);
#endif
#if R1024_Unroll_R(10)
R1024_8_rounds(10);
#endif
#if R1024_Unroll_R(11)
R1024_8_rounds(11);
#endif
#if R1024_Unroll_R(12)
R1024_8_rounds(12);
#endif
#if R1024_Unroll_R(13)
R1024_8_rounds(13);
#endif
#if R1024_Unroll_R(14)
R1024_8_rounds(14);
#endif
#if (SKEIN_UNROLL_1024 > 14)
#error "need more unrolling in Skein_1024_Process_Block"
#endif
}
/* do the final "feedforward" xor, update context chaining vars */
ctx->X[ 0] = X00 ^ w[ 0];
ctx->X[ 1] = X01 ^ w[ 1];
ctx->X[ 2] = X02 ^ w[ 2];
ctx->X[ 3] = X03 ^ w[ 3];
ctx->X[ 4] = X04 ^ w[ 4];
ctx->X[ 5] = X05 ^ w[ 5];
ctx->X[ 6] = X06 ^ w[ 6];
ctx->X[ 7] = X07 ^ w[ 7];
ctx->X[ 8] = X08 ^ w[ 8];
ctx->X[ 9] = X09 ^ w[ 9];
ctx->X[10] = X10 ^ w[10];
ctx->X[11] = X11 ^ w[11];
ctx->X[12] = X12 ^ w[12];
ctx->X[13] = X13 ^ w[13];
ctx->X[14] = X14 ^ w[14];
ctx->X[15] = X15 ^ w[15];
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
blkPtr += SKEIN1024_BLOCK_BYTES;
}
while (--blkCnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
static size_t Skein1024_Process_Block_CodeSize(void)
{
return ((u08b_t *) Skein1024_Process_Block_CodeSize) -
((u08b_t *) Skein1024_Process_Block);
}
static uint_t Skein1024_Unroll_Cnt(void)
{
return SKEIN_UNROLL_1024;
}
#endif
#endif
#if 0
/*****************************************************************/
/* 256-bit Skein */
/*****************************************************************/
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a straight hashing operation */
static int Skein_256_Init(Skein_256_Ctxt_t *ctx, size_t hashBitLen)
{
union
{
u08b_t b[SKEIN_256_STATE_BYTES];
u64b_t w[SKEIN_256_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
switch (hashBitLen)
{ /* use pre-computed values, where available */
#ifndef SKEIN_NO_PRECOMP
case 256: memcpy(ctx->X,SKEIN_256_IV_256,sizeof(ctx->X)); break;
case 224: memcpy(ctx->X,SKEIN_256_IV_224,sizeof(ctx->X)); break;
case 160: memcpy(ctx->X,SKEIN_256_IV_160,sizeof(ctx->X)); break;
case 128: memcpy(ctx->X,SKEIN_256_IV_128,sizeof(ctx->X)); break;
#endif
default:
/* here if there is no precomputed IV value available */
/* build/process the config block, type == CONFIG (could be precomputed) */
Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
/* compute the initial chaining values from config block */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
break;
}
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
/* [identical to Skein_256_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
static int Skein_256_InitExt(Skein_256_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
{
union
{
u08b_t b[SKEIN_256_STATE_BYTES];
u64b_t w[SKEIN_256_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
/* compute the initial chaining values ctx->X[], based on key */
if (keyBytes == 0) /* is there a key? */
{
memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
}
else /* here to pre-process a key */
{
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
Skein_256_Update(ctx,key,keyBytes); /* hash the key */
Skein_256_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
#if SKEIN_NEED_SWAP
{
uint_t i;
for (i=0;i<SKEIN_256_STATE_WORDS;i++) /* convert key bytes to context words */
ctx->X[i] = Skein_Swap64(ctx->X[i]);
}
#endif
}
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
Skein_Start_New_Type(ctx,CFG_FINAL);
memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
Skein_Show_Key(256,&ctx->h,key,keyBytes);
/* compute the initial chaining values from config block */
Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
/* The chaining vars ctx->X are now initialized */
/* Set up to process the data message portion of the hash (default) */
ctx->h.bCnt = 0; /* buffer b[] starts out empty */
Skein_Start_New_Type(ctx,MSG);
return SKEIN_SUCCESS;
}
#endif
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process the input bytes */
static int Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
{
size_t n;
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
/* process full blocks, if any */
if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES)
{
if (ctx->h.bCnt) /* finish up any buffered message data */
{
n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
if (n)
{
Skein_assert(n < msgByteCnt); /* check on our logic here */
memcpy(&ctx->b[ctx->h.bCnt],msg,n);
msgByteCnt -= n;
msg += n;
ctx->h.bCnt += n;
}
Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);
Skein_256_Process_Block(ctx,ctx->b,1,SKEIN_256_BLOCK_BYTES);
ctx->h.bCnt = 0;
}
/* now process any remaining full blocks, directly from input message data */
if (msgByteCnt > SKEIN_256_BLOCK_BYTES)
{
n = (msgByteCnt-1) / SKEIN_256_BLOCK_BYTES; /* number of full blocks to process */
Skein_256_Process_Block(ctx,msg,n,SKEIN_256_BLOCK_BYTES);
msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;
msg += n * SKEIN_256_BLOCK_BYTES;
}
Skein_assert(ctx->h.bCnt == 0);
}
/* copy any remaining source message data bytes into b[] */
if (msgByteCnt)
{
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES);
memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
ctx->h.bCnt += msgByteCnt;
}
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the result */
static int Skein_256_Final(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
{
size_t i,n,byteCnt;
u64b_t X[SKEIN_256_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)
{
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
n = byteCnt - i*SKEIN_256_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN_256_BLOCK_BYTES)
n = SKEIN_256_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
static size_t Skein_256_API_CodeSize(void)
{
return ((u08b_t *) Skein_256_API_CodeSize) -
((u08b_t *) Skein_256_Init);
}
#endif
/*****************************************************************/
/* 512-bit Skein */
/*****************************************************************/
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a straight hashing operation */
static int Skein_512_Init(Skein_512_Ctxt_t *ctx, size_t hashBitLen)
{
union
{
u08b_t b[SKEIN_512_STATE_BYTES];
u64b_t w[SKEIN_512_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
switch (hashBitLen)
{ /* use pre-computed values, where available */
#ifndef SKEIN_NO_PRECOMP
case 512: memcpy(ctx->X,SKEIN_512_IV_512,sizeof(ctx->X)); break;
case 384: memcpy(ctx->X,SKEIN_512_IV_384,sizeof(ctx->X)); break;
case 256: memcpy(ctx->X,SKEIN_512_IV_256,sizeof(ctx->X)); break;
case 224: memcpy(ctx->X,SKEIN_512_IV_224,sizeof(ctx->X)); break;
#endif
default:
/* here if there is no precomputed IV value available */
/* build/process the config block, type == CONFIG (could be precomputed) */
Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
/* compute the initial chaining values from config block */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
break;
}
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
return SKEIN_SUCCESS;
}
#if 0
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
/* [identical to Skein_512_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
static int Skein_512_InitExt(Skein_512_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
{
union
{
u08b_t b[SKEIN_512_STATE_BYTES];
u64b_t w[SKEIN_512_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
/* compute the initial chaining values ctx->X[], based on key */
if (keyBytes == 0) /* is there a key? */
{
memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
}
else /* here to pre-process a key */
{
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
Skein_512_Update(ctx,key,keyBytes); /* hash the key */
Skein_512_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
#if SKEIN_NEED_SWAP
{
uint_t i;
for (i=0;i<SKEIN_512_STATE_WORDS;i++) /* convert key bytes to context words */
ctx->X[i] = Skein_Swap64(ctx->X[i]);
}
#endif
}
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
Skein_Start_New_Type(ctx,CFG_FINAL);
memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
Skein_Show_Key(512,&ctx->h,key,keyBytes);
/* compute the initial chaining values from config block */
Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
/* The chaining vars ctx->X are now initialized */
/* Set up to process the data message portion of the hash (default) */
ctx->h.bCnt = 0; /* buffer b[] starts out empty */
Skein_Start_New_Type(ctx,MSG);
return SKEIN_SUCCESS;
}
#endif
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process the input bytes */
static int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
{
size_t n;
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
/* process full blocks, if any */
if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES)
{
if (ctx->h.bCnt) /* finish up any buffered message data */
{
n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
if (n)
{
Skein_assert(n < msgByteCnt); /* check on our logic here */
memcpy(&ctx->b[ctx->h.bCnt],msg,n);
msgByteCnt -= n;
msg += n;
ctx->h.bCnt += n;
}
Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);
Skein_512_Process_Block(ctx,ctx->b,1,SKEIN_512_BLOCK_BYTES);
ctx->h.bCnt = 0;
}
/* now process any remaining full blocks, directly from input message data */
if (msgByteCnt > SKEIN_512_BLOCK_BYTES)
{
n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES; /* number of full blocks to process */
Skein_512_Process_Block(ctx,msg,n,SKEIN_512_BLOCK_BYTES);
msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;
msg += n * SKEIN_512_BLOCK_BYTES;
}
Skein_assert(ctx->h.bCnt == 0);
}
/* copy any remaining source message data bytes into b[] */
if (msgByteCnt)
{
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);
memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
ctx->h.bCnt += msgByteCnt;
}
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the result */
static int Skein_512_Final(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
{
size_t i,n,byteCnt;
u64b_t X[SKEIN_512_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
{
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN_512_BLOCK_BYTES)
n = SKEIN_512_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(512,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
static size_t Skein_512_API_CodeSize(void)
{
return ((u08b_t *) Skein_512_API_CodeSize) -
((u08b_t *) Skein_512_Init);
}
#endif
/*****************************************************************/
/* 1024-bit Skein */
/*****************************************************************/
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a straight hashing operation */
static int Skein1024_Init(Skein1024_Ctxt_t *ctx, size_t hashBitLen)
{
union
{
u08b_t b[SKEIN1024_STATE_BYTES];
u64b_t w[SKEIN1024_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
switch (hashBitLen)
{ /* use pre-computed values, where available */
#ifndef SKEIN_NO_PRECOMP
case 512: memcpy(ctx->X,SKEIN1024_IV_512 ,sizeof(ctx->X)); break;
case 384: memcpy(ctx->X,SKEIN1024_IV_384 ,sizeof(ctx->X)); break;
case 1024: memcpy(ctx->X,SKEIN1024_IV_1024,sizeof(ctx->X)); break;
#endif
default:
/* here if there is no precomputed IV value available */
/* build/process the config block, type == CONFIG (could be precomputed) */
Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
/* compute the initial chaining values from config block */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
break;
}
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
return SKEIN_SUCCESS;
}
#if 0
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a MAC and/or tree hash operation */
/* [identical to Skein1024_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
static int Skein1024_InitExt(Skein1024_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
{
union
{
u08b_t b[SKEIN1024_STATE_BYTES];
u64b_t w[SKEIN1024_STATE_WORDS];
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
/* compute the initial chaining values ctx->X[], based on key */
if (keyBytes == 0) /* is there a key? */
{
memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
}
else /* here to pre-process a key */
{
Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
/* do a mini-Init right here */
ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
Skein1024_Update(ctx,key,keyBytes); /* hash the key */
Skein1024_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
#if SKEIN_NEED_SWAP
{
uint_t i;
for (i=0;i<SKEIN1024_STATE_WORDS;i++) /* convert key bytes to context words */
ctx->X[i] = Skein_Swap64(ctx->X[i]);
}
#endif
}
/* build/process the config block, type == CONFIG (could be precomputed for each key) */
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
Skein_Start_New_Type(ctx,CFG_FINAL);
memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
Skein_Show_Key(1024,&ctx->h,key,keyBytes);
/* compute the initial chaining values from config block */
Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
/* The chaining vars ctx->X are now initialized */
/* Set up to process the data message portion of the hash (default) */
ctx->h.bCnt = 0; /* buffer b[] starts out empty */
Skein_Start_New_Type(ctx,MSG);
return SKEIN_SUCCESS;
}
#endif
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process the input bytes */
static int Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
{
size_t n;
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
/* process full blocks, if any */
if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES)
{
if (ctx->h.bCnt) /* finish up any buffered message data */
{
n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
if (n)
{
Skein_assert(n < msgByteCnt); /* check on our logic here */
memcpy(&ctx->b[ctx->h.bCnt],msg,n);
msgByteCnt -= n;
msg += n;
ctx->h.bCnt += n;
}
Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);
Skein1024_Process_Block(ctx,ctx->b,1,SKEIN1024_BLOCK_BYTES);
ctx->h.bCnt = 0;
}
/* now process any remaining full blocks, directly from input message data */
if (msgByteCnt > SKEIN1024_BLOCK_BYTES)
{
n = (msgByteCnt-1) / SKEIN1024_BLOCK_BYTES; /* number of full blocks to process */
Skein1024_Process_Block(ctx,msg,n,SKEIN1024_BLOCK_BYTES);
msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;
msg += n * SKEIN1024_BLOCK_BYTES;
}
Skein_assert(ctx->h.bCnt == 0);
}
/* copy any remaining source message data bytes into b[] */
if (msgByteCnt)
{
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES);
memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
ctx->h.bCnt += msgByteCnt;
}
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the result */
static int Skein1024_Final(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
{
size_t i,n,byteCnt;
u64b_t X[SKEIN1024_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)
{
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
n = byteCnt - i*SKEIN1024_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN1024_BLOCK_BYTES)
n = SKEIN1024_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(1024,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
static size_t Skein1024_API_CodeSize(void)
{
return ((u08b_t *) Skein1024_API_CodeSize) -
((u08b_t *) Skein1024_Init);
}
#endif
/**************** Functions to support MAC/tree hashing ***************/
/* (this code is identical for Optimized and Reference versions) */
#if 0
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the block, no OUTPUT stage */
static int Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
{
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_256_BLOCK_BYTES); /* "output" the state bytes */
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the block, no OUTPUT stage */
static int Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
{
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_512_BLOCK_BYTES); /* "output" the state bytes */
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the block, no OUTPUT stage */
static int Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
{
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN1024_BLOCK_BYTES); /* "output" the state bytes */
return SKEIN_SUCCESS;
}
#if SKEIN_TREE_HASH
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* just do the OUTPUT stage */
static int Skein_256_Output(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
{
size_t i,n,byteCnt;
u64b_t X[SKEIN_256_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)
{
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
n = byteCnt - i*SKEIN_256_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN_256_BLOCK_BYTES)
n = SKEIN_256_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* just do the OUTPUT stage */
static int Skein_512_Output(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
{
size_t i,n,byteCnt;
u64b_t X[SKEIN_512_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
{
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN_512_BLOCK_BYTES)
n = SKEIN_512_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* just do the OUTPUT stage */
static int Skein1024_Output(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
{
size_t i,n,byteCnt;
u64b_t X[SKEIN1024_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)
{
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
n = byteCnt - i*SKEIN1024_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN1024_BLOCK_BYTES)
n = SKEIN1024_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
#endif
#endif
typedef struct
{
uint_t statebits; /* 256, 512, or 1024 */
union
{
Skein_Ctxt_Hdr_t h; /* common header "overlay" */
Skein_256_Ctxt_t ctx_256;
Skein_512_Ctxt_t ctx_512;
Skein1024_Ctxt_t ctx1024;
} u;
}
hashState;
/* "incremental" hashing API */
static HashReturn Init (hashState *state, int hashbitlen);
static HashReturn Update(hashState *state, const BitSequence *data, DataLength databitlen);
static HashReturn Final (hashState *state, BitSequence *hashval);
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* select the context size and init the context */
static HashReturn Init(hashState *state, int hashbitlen)
{
#if SKEIN_256_NIST_MAX_HASHBITS
if (hashbitlen <= SKEIN_256_NIST_MAX_HASHBITS)
{
Skein_Assert(hashbitlen > 0,BAD_HASHLEN);
state->statebits = 64*SKEIN_256_STATE_WORDS;
return Skein_256_Init(&state->u.ctx_256,(size_t) hashbitlen);
}
#endif
if (hashbitlen <= SKEIN_512_NIST_MAX_HASHBITS)
{
state->statebits = 64*SKEIN_512_STATE_WORDS;
return Skein_512_Init(&state->u.ctx_512,(size_t) hashbitlen);
}
else
{
state->statebits = 64*SKEIN1024_STATE_WORDS;
return Skein1024_Init(&state->u.ctx1024,(size_t) hashbitlen);
}
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process data to be hashed */
static HashReturn Update(hashState *state, const BitSequence *data, DataLength databitlen)
{
/* only the final Update() call is allowed do partial bytes, else assert an error */
Skein_Assert((state->u.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 || databitlen == 0, SKEIN_FAIL);
Skein_Assert(state->statebits % 256 == 0 && (state->statebits-256) < 1024,SKEIN_FAIL);
if ((databitlen & 7) == 0) /* partial bytes? */
{
switch ((state->statebits >> 8) & 3)
{
case 2: return Skein_512_Update(&state->u.ctx_512,data,databitlen >> 3);
case 1: return Skein_256_Update(&state->u.ctx_256,data,databitlen >> 3);
case 0: return Skein1024_Update(&state->u.ctx1024,data,databitlen >> 3);
default: return SKEIN_FAIL;
}
}
else
{ /* handle partial final byte */
size_t bCnt = (databitlen >> 3) + 1; /* number of bytes to handle (nonzero here!) */
u08b_t b,mask;
mask = (u08b_t) (1u << (7 - (databitlen & 7))); /* partial byte bit mask */
b = (u08b_t) ((data[bCnt-1] & (0-mask)) | mask); /* apply bit padding on final byte */
switch ((state->statebits >> 8) & 3)
{
case 2: Skein_512_Update(&state->u.ctx_512,data,bCnt-1); /* process all but the final byte */
Skein_512_Update(&state->u.ctx_512,&b , 1 ); /* process the (masked) partial byte */
break;
case 1: Skein_256_Update(&state->u.ctx_256,data,bCnt-1); /* process all but the final byte */
Skein_256_Update(&state->u.ctx_256,&b , 1 ); /* process the (masked) partial byte */
break;
case 0: Skein1024_Update(&state->u.ctx1024,data,bCnt-1); /* process all but the final byte */
Skein1024_Update(&state->u.ctx1024,&b , 1 ); /* process the (masked) partial byte */
break;
default: return SKEIN_FAIL;
}
Skein_Set_Bit_Pad_Flag(state->u.h); /* set tweak flag for the final call */
return SKEIN_SUCCESS;
}
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize hash computation and output the result (hashbitlen bits) */
static HashReturn Final(hashState *state, BitSequence *hashval)
{
Skein_Assert(state->statebits % 256 == 0 && (state->statebits-256) < 1024,FAIL);
switch ((state->statebits >> 8) & 3)
{
case 2: return Skein_512_Final(&state->u.ctx_512,hashval);
case 1: return Skein_256_Final(&state->u.ctx_256,hashval);
case 0: return Skein1024_Final(&state->u.ctx1024,hashval);
default: return SKEIN_FAIL;
}
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* all-in-one hash function */
HashReturn skein_hash(int hashbitlen, const BitSequence *data, /* all-in-one call */
DataLength databitlen,BitSequence *hashval)
{
hashState state;
HashReturn r = Init(&state,hashbitlen);
if (r == SKEIN_SUCCESS)
{ /* these calls do not fail when called properly */
r = Update(&state,data,databitlen);
Final(&state,hashval);
}
return r;
}