wownero/src/device/device_default.cpp
j-berman ea87b30f89 Add view tags to outputs to reduce wallet scanning time
Implements view tags as proposed by @UkoeHB in MRL issue
https://github.com/monero-project/research-lab/issues/73

At tx construction, the sender adds a 1-byte view tag to each
output. The view tag is derived from the sender-receiver
shared secret. When scanning for outputs, the receiver can
check the view tag for a match, in order to reduce scanning
time. When the view tag does not match, the wallet avoids the
more expensive EC operations when deriving the output public
key using the shared secret.
2022-04-18 00:49:53 -07:00

460 lines
22 KiB
C++

// Copyright (c) 2017-2022, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#include "device_default.hpp"
#include "int-util.h"
#include "crypto/wallet/crypto.h"
#include "cryptonote_basic/account.h"
#include "cryptonote_basic/subaddress_index.h"
#include "cryptonote_core/cryptonote_tx_utils.h"
#include "ringct/rctOps.h"
#include "cryptonote_config.h"
namespace hw {
namespace core {
device_default::device_default() { }
device_default::~device_default() { }
/* ===================================================================== */
/* === Misc ==== */
/* ===================================================================== */
static inline unsigned char *operator &(crypto::ec_scalar &scalar) {
return &reinterpret_cast<unsigned char &>(scalar);
}
static inline const unsigned char *operator &(const crypto::ec_scalar &scalar) {
return &reinterpret_cast<const unsigned char &>(scalar);
}
/* ======================================================================= */
/* SETUP/TEARDOWN */
/* ======================================================================= */
bool device_default::set_name(const std::string &name) {
this->name = name;
return true;
}
const std::string device_default::get_name() const {
return this->name;
}
bool device_default::init(void) {
return true;
}
bool device_default::release() {
return true;
}
bool device_default::connect(void) {
return true;
}
bool device_default::disconnect() {
return true;
}
bool device_default::set_mode(device_mode mode) {
return device::set_mode(mode);
}
/* ======================================================================= */
/* LOCKER */
/* ======================================================================= */
void device_default::lock() { }
bool device_default::try_lock() { return true; }
void device_default::unlock() { }
/* ======================================================================= */
/* WALLET & ADDRESS */
/* ======================================================================= */
bool device_default::generate_chacha_key(const cryptonote::account_keys &keys, crypto::chacha_key &key, uint64_t kdf_rounds) {
const crypto::secret_key &view_key = keys.m_view_secret_key;
const crypto::secret_key &spend_key = keys.m_spend_secret_key;
epee::mlocked<tools::scrubbed_arr<char, sizeof(view_key) + sizeof(spend_key) + 1>> data;
memcpy(data.data(), &view_key, sizeof(view_key));
memcpy(data.data() + sizeof(view_key), &spend_key, sizeof(spend_key));
data[sizeof(data) - 1] = config::HASH_KEY_WALLET;
crypto::generate_chacha_key(data.data(), sizeof(data), key, kdf_rounds);
return true;
}
bool device_default::get_public_address(cryptonote::account_public_address &pubkey) {
dfns();
}
bool device_default::get_secret_keys(crypto::secret_key &viewkey , crypto::secret_key &spendkey) {
dfns();
}
/* ======================================================================= */
/* SUB ADDRESS */
/* ======================================================================= */
bool device_default::derive_subaddress_public_key(const crypto::public_key &out_key, const crypto::key_derivation &derivation, const std::size_t output_index, crypto::public_key &derived_key) {
return crypto::wallet::derive_subaddress_public_key(out_key, derivation, output_index,derived_key);
}
crypto::public_key device_default::get_subaddress_spend_public_key(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) {
if (index.is_zero())
return keys.m_account_address.m_spend_public_key;
// m = Hs(a || index_major || index_minor)
crypto::secret_key m = get_subaddress_secret_key(keys.m_view_secret_key, index);
// M = m*G
crypto::public_key M;
crypto::secret_key_to_public_key(m, M);
// D = B + M
crypto::public_key D = rct::rct2pk(rct::addKeys(rct::pk2rct(keys.m_account_address.m_spend_public_key), rct::pk2rct(M)));
return D;
}
std::vector<crypto::public_key> device_default::get_subaddress_spend_public_keys(const cryptonote::account_keys &keys, uint32_t account, uint32_t begin, uint32_t end) {
CHECK_AND_ASSERT_THROW_MES(begin <= end, "begin > end");
std::vector<crypto::public_key> pkeys;
pkeys.reserve(end - begin);
cryptonote::subaddress_index index = {account, begin};
ge_p3 p3;
ge_cached cached;
CHECK_AND_ASSERT_THROW_MES(ge_frombytes_vartime(&p3, (const unsigned char*)keys.m_account_address.m_spend_public_key.data) == 0,
"ge_frombytes_vartime failed to convert spend public key");
ge_p3_to_cached(&cached, &p3);
for (uint32_t idx = begin; idx < end; ++idx)
{
index.minor = idx;
if (index.is_zero())
{
pkeys.push_back(keys.m_account_address.m_spend_public_key);
continue;
}
crypto::secret_key m = get_subaddress_secret_key(keys.m_view_secret_key, index);
// M = m*G
ge_scalarmult_base(&p3, (const unsigned char*)m.data);
// D = B + M
crypto::public_key D;
ge_p1p1 p1p1;
ge_add(&p1p1, &p3, &cached);
ge_p1p1_to_p3(&p3, &p1p1);
ge_p3_tobytes((unsigned char*)D.data, &p3);
pkeys.push_back(D);
}
return pkeys;
}
cryptonote::account_public_address device_default::get_subaddress(const cryptonote::account_keys& keys, const cryptonote::subaddress_index &index) {
if (index.is_zero())
return keys.m_account_address;
crypto::public_key D = get_subaddress_spend_public_key(keys, index);
// C = a*D
crypto::public_key C = rct::rct2pk(rct::scalarmultKey(rct::pk2rct(D), rct::sk2rct(keys.m_view_secret_key)));
// result: (C, D)
cryptonote::account_public_address address;
address.m_view_public_key = C;
address.m_spend_public_key = D;
return address;
}
crypto::secret_key device_default::get_subaddress_secret_key(const crypto::secret_key &a, const cryptonote::subaddress_index &index) {
char data[sizeof(config::HASH_KEY_SUBADDRESS) + sizeof(crypto::secret_key) + 2 * sizeof(uint32_t)];
memcpy(data, config::HASH_KEY_SUBADDRESS, sizeof(config::HASH_KEY_SUBADDRESS));
memcpy(data + sizeof(config::HASH_KEY_SUBADDRESS), &a, sizeof(crypto::secret_key));
uint32_t idx = SWAP32LE(index.major);
memcpy(data + sizeof(config::HASH_KEY_SUBADDRESS) + sizeof(crypto::secret_key), &idx, sizeof(uint32_t));
idx = SWAP32LE(index.minor);
memcpy(data + sizeof(config::HASH_KEY_SUBADDRESS) + sizeof(crypto::secret_key) + sizeof(uint32_t), &idx, sizeof(uint32_t));
crypto::secret_key m;
crypto::hash_to_scalar(data, sizeof(data), m);
return m;
}
/* ======================================================================= */
/* DERIVATION & KEY */
/* ======================================================================= */
bool device_default::verify_keys(const crypto::secret_key &secret_key, const crypto::public_key &public_key) {
crypto::public_key calculated_pub;
bool r = crypto::secret_key_to_public_key(secret_key, calculated_pub);
return r && public_key == calculated_pub;
}
bool device_default::scalarmultKey(rct::key & aP, const rct::key &P, const rct::key &a) {
rct::scalarmultKey(aP, P,a);
return true;
}
bool device_default::scalarmultBase(rct::key &aG, const rct::key &a) {
rct::scalarmultBase(aG,a);
return true;
}
bool device_default::sc_secret_add(crypto::secret_key &r, const crypto::secret_key &a, const crypto::secret_key &b) {
sc_add(&r, &a, &b);
return true;
}
crypto::secret_key device_default::generate_keys(crypto::public_key &pub, crypto::secret_key &sec, const crypto::secret_key& recovery_key, bool recover) {
return crypto::generate_keys(pub, sec, recovery_key, recover);
}
bool device_default::generate_key_derivation(const crypto::public_key &key1, const crypto::secret_key &key2, crypto::key_derivation &derivation) {
return crypto::wallet::generate_key_derivation(key1, key2, derivation);
}
bool device_default::derivation_to_scalar(const crypto::key_derivation &derivation, const size_t output_index, crypto::ec_scalar &res){
crypto::derivation_to_scalar(derivation,output_index, res);
return true;
}
bool device_default::derive_secret_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::secret_key &base, crypto::secret_key &derived_key){
crypto::derive_secret_key(derivation, output_index, base, derived_key);
return true;
}
bool device_default::derive_public_key(const crypto::key_derivation &derivation, const std::size_t output_index, const crypto::public_key &base, crypto::public_key &derived_key){
return crypto::derive_public_key(derivation, output_index, base, derived_key);
}
bool device_default::secret_key_to_public_key(const crypto::secret_key &sec, crypto::public_key &pub) {
return crypto::secret_key_to_public_key(sec,pub);
}
bool device_default::generate_key_image(const crypto::public_key &pub, const crypto::secret_key &sec, crypto::key_image &image){
crypto::generate_key_image(pub, sec,image);
return true;
}
bool device_default::derive_view_tag(const crypto::key_derivation &derivation, const std::size_t output_index, crypto::view_tag &view_tag) {
crypto::derive_view_tag(derivation, output_index, view_tag);
return true;
}
bool device_default::conceal_derivation(crypto::key_derivation &derivation, const crypto::public_key &tx_pub_key, const std::vector<crypto::public_key> &additional_tx_pub_keys, const crypto::key_derivation &main_derivation, const std::vector<crypto::key_derivation> &additional_derivations){
return true;
}
/* ======================================================================= */
/* TRANSACTION */
/* ======================================================================= */
void device_default::generate_tx_proof(const crypto::hash &prefix_hash,
const crypto::public_key &R, const crypto::public_key &A, const boost::optional<crypto::public_key> &B, const crypto::public_key &D, const crypto::secret_key &r,
crypto::signature &sig) {
crypto::generate_tx_proof(prefix_hash, R, A, B, D, r, sig);
}
bool device_default::open_tx(crypto::secret_key &tx_key) {
cryptonote::keypair txkey = cryptonote::keypair::generate(*this);
tx_key = txkey.sec;
return true;
}
void device_default::get_transaction_prefix_hash(const cryptonote::transaction_prefix& tx, crypto::hash& h) {
cryptonote::get_transaction_prefix_hash(tx, h);
}
bool device_default::generate_output_ephemeral_keys(const size_t tx_version,
const cryptonote::account_keys &sender_account_keys, const crypto::public_key &txkey_pub, const crypto::secret_key &tx_key,
const cryptonote::tx_destination_entry &dst_entr, const boost::optional<cryptonote::account_public_address> &change_addr, const size_t output_index,
const bool &need_additional_txkeys, const std::vector<crypto::secret_key> &additional_tx_keys,
std::vector<crypto::public_key> &additional_tx_public_keys,
std::vector<rct::key> &amount_keys, crypto::public_key &out_eph_public_key,
const bool use_view_tags, crypto::view_tag &view_tag) {
crypto::key_derivation derivation;
// make additional tx pubkey if necessary
cryptonote::keypair additional_txkey;
if (need_additional_txkeys)
{
additional_txkey.sec = additional_tx_keys[output_index];
if (dst_entr.is_subaddress)
additional_txkey.pub = rct::rct2pk(rct::scalarmultKey(rct::pk2rct(dst_entr.addr.m_spend_public_key), rct::sk2rct(additional_txkey.sec)));
else
additional_txkey.pub = rct::rct2pk(rct::scalarmultBase(rct::sk2rct(additional_txkey.sec)));
}
bool r;
if (change_addr && dst_entr.addr == *change_addr)
{
// sending change to yourself; derivation = a*R
r = generate_key_derivation(txkey_pub, sender_account_keys.m_view_secret_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << txkey_pub << ", " << sender_account_keys.m_view_secret_key << ")");
}
else
{
// sending to the recipient; derivation = r*A (or s*C in the subaddress scheme)
r = generate_key_derivation(dst_entr.addr.m_view_public_key, dst_entr.is_subaddress && need_additional_txkeys ? additional_txkey.sec : tx_key, derivation);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to generate_key_derivation(" << dst_entr.addr.m_view_public_key << ", " << (dst_entr.is_subaddress && need_additional_txkeys ? additional_txkey.sec : tx_key) << ")");
}
if (need_additional_txkeys)
{
additional_tx_public_keys.push_back(additional_txkey.pub);
}
if (tx_version > 1)
{
crypto::secret_key scalar1;
derivation_to_scalar(derivation, output_index, scalar1);
amount_keys.push_back(rct::sk2rct(scalar1));
}
if (use_view_tags)
{
derive_view_tag(derivation, output_index, view_tag);
}
r = derive_public_key(derivation, output_index, dst_entr.addr.m_spend_public_key, out_eph_public_key);
CHECK_AND_ASSERT_MES(r, false, "at creation outs: failed to derive_public_key(" << derivation << ", " << output_index << ", "<< dst_entr.addr.m_spend_public_key << ")");
return r;
}
bool device_default::encrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) {
crypto::key_derivation derivation;
crypto::hash hash;
char data[33]; /* A hash, and an extra byte */
if (!generate_key_derivation(public_key, secret_key, derivation))
return false;
memcpy(data, &derivation, 32);
data[32] = config::HASH_KEY_ENCRYPTED_PAYMENT_ID;
cn_fast_hash(data, 33, hash);
for (size_t b = 0; b < 8; ++b)
payment_id.data[b] ^= hash.data[b];
return true;
}
rct::key device_default::genCommitmentMask(const rct::key &amount_key) {
return rct::genCommitmentMask(amount_key);
}
bool device_default::ecdhEncode(rct::ecdhTuple & unmasked, const rct::key & sharedSec, bool short_amount) {
rct::ecdhEncode(unmasked, sharedSec, short_amount);
return true;
}
bool device_default::ecdhDecode(rct::ecdhTuple & masked, const rct::key & sharedSec, bool short_amount) {
rct::ecdhDecode(masked, sharedSec, short_amount);
return true;
}
bool device_default::mlsag_prepare(const rct::key &H, const rct::key &xx,
rct::key &a, rct::key &aG, rct::key &aHP, rct::key &II) {
rct::skpkGen(a, aG);
rct::scalarmultKey(aHP, H, a);
rct::scalarmultKey(II, H, xx);
return true;
}
bool device_default::mlsag_prepare(rct::key &a, rct::key &aG) {
rct::skpkGen(a, aG);
return true;
}
bool device_default::mlsag_prehash(const std::string &blob, size_t inputs_size, size_t outputs_size, const rct::keyV &hashes, const rct::ctkeyV &outPk, rct::key &prehash) {
prehash = rct::cn_fast_hash(hashes);
return true;
}
bool device_default::mlsag_hash(const rct::keyV &toHash, rct::key &c_old) {
c_old = rct::hash_to_scalar(toHash);
return true;
}
bool device_default::mlsag_sign(const rct::key &c, const rct::keyV &xx, const rct::keyV &alpha, const size_t rows, const size_t dsRows, rct::keyV &ss ) {
CHECK_AND_ASSERT_THROW_MES(dsRows<=rows, "dsRows greater than rows");
CHECK_AND_ASSERT_THROW_MES(xx.size() == rows, "xx size does not match rows");
CHECK_AND_ASSERT_THROW_MES(alpha.size() == rows, "alpha size does not match rows");
CHECK_AND_ASSERT_THROW_MES(ss.size() == rows, "ss size does not match rows");
for (size_t j = 0; j < rows; j++) {
sc_mulsub(ss[j].bytes, c.bytes, xx[j].bytes, alpha[j].bytes);
}
return true;
}
bool device_default::clsag_prepare(const rct::key &p, const rct::key &z, rct::key &I, rct::key &D, const rct::key &H, rct::key &a, rct::key &aG, rct::key &aH) {
rct::skpkGen(a,aG); // aG = a*G
rct::scalarmultKey(aH,H,a); // aH = a*H
rct::scalarmultKey(I,H,p); // I = p*H
rct::scalarmultKey(D,H,z); // D = z*H
return true;
}
bool device_default::clsag_hash(const rct::keyV &data, rct::key &hash) {
hash = rct::hash_to_scalar(data);
return true;
}
bool device_default::clsag_sign(const rct::key &c, const rct::key &a, const rct::key &p, const rct::key &z, const rct::key &mu_P, const rct::key &mu_C, rct::key &s) {
rct::key s0_p_mu_P;
sc_mul(s0_p_mu_P.bytes,mu_P.bytes,p.bytes);
rct::key s0_add_z_mu_C;
sc_muladd(s0_add_z_mu_C.bytes,mu_C.bytes,z.bytes,s0_p_mu_P.bytes);
sc_mulsub(s.bytes,c.bytes,s0_add_z_mu_C.bytes,a.bytes);
return true;
}
bool device_default::close_tx() {
return true;
}
/* ---------------------------------------------------------- */
static device_default *default_core_device = NULL;
void register_all(std::map<std::string, std::unique_ptr<device>> &registry) {
if (!default_core_device) {
default_core_device = new device_default();
default_core_device->set_name("default_core_device");
}
registry.insert(std::make_pair("default", std::unique_ptr<device>(default_core_device)));
}
}
}