// Copyright (c) 2017, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #pragma once #include <cstdint> #include <memory> #include <type_traits> namespace epee { /*! \brief Non-owning sequence of data. Does not deep copy Inspired by `gsl::span` and/or `boost::iterator_range`. This class is intended to be used as a parameter type for functions that need to take a writable or read-only sequence of data. Most common cases are `span<char>` and `span<std::uint8_t>`. Using as a class member is only recommended if clearly documented as not doing a deep-copy. C-arrays are easily convertible to this type. \note Conversion from C string literal to `span<const char>` will include the NULL-terminator. \note Never allows derived-to-base pointer conversion; an array of derived types is not an array of base types. */ template<typename T> class span { /* Supporting class types is tricky - the {ptr,len} constructor will allow derived-to-base conversions. This is NOT desireable because an array of derived types is not an array of base types. It is possible to handle this case, implement when/if needed. */ static_assert(!std::is_class<T>(), "no class types are currently allowed"); public: using value_type = T; using size_type = std::size_t; using difference_type = std::ptrdiff_t; using pointer = T*; using const_pointer = const T*; using reference = T&; using const_reference = const T&; using iterator = pointer; using const_iterator = const_pointer; constexpr span() noexcept : ptr(nullptr), len(0) {} constexpr span(std::nullptr_t) noexcept : span() {} constexpr span(T* const src_ptr, const std::size_t count) noexcept : ptr(src_ptr), len(count) {} //! Conversion from C-array. Prevents common bugs with sizeof + arrays. template<std::size_t N> constexpr span(T (&src)[N]) noexcept : span(src, N) {} constexpr span(const span&) noexcept = default; span& operator=(const span&) noexcept = default; constexpr iterator begin() const noexcept { return ptr; } constexpr const_iterator cbegin() const noexcept { return ptr; } constexpr iterator end() const noexcept { return begin() + size(); } constexpr const_iterator cend() const noexcept { return cbegin() + size(); } constexpr bool empty() const noexcept { return size() == 0; } constexpr pointer data() const noexcept { return ptr; } constexpr std::size_t size() const noexcept { return len; } constexpr std::size_t size_bytes() const noexcept { return size() * sizeof(value_type); } private: T* ptr; std::size_t len; }; //! \return `span<const T::value_type>` from a STL compatible `src`. template<typename T> constexpr span<const typename T::value_type> to_span(const T& src) { // compiler provides diagnostic if size() is not size_t. return {src.data(), src.size()}; } template<typename T> constexpr bool has_padding() noexcept { return !std::is_pod<T>() || alignof(T) != 1; } //! \return Cast data from `src` as `span<const std::uint8_t>`. template<typename T> span<const std::uint8_t> to_byte_span(const span<const T> src) noexcept { static_assert(!has_padding<T>(), "source type may have padding"); return {reinterpret_cast<const std::uint8_t*>(src.data()), src.size_bytes()}; } //! \return `span<const std::uint8_t>` which represents the bytes at `&src`. template<typename T> span<const std::uint8_t> as_byte_span(const T& src) noexcept { static_assert(!std::is_empty<T>(), "empty types will not work -> sizeof == 1"); static_assert(!has_padding<T>(), "source type may have padding"); return {reinterpret_cast<const std::uint8_t*>(std::addressof(src)), sizeof(T)}; } }