// Copyright (c) 2014-2017, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include "include_base_utils.h" using namespace epee; #include #include "wipeable_string.h" #include "cryptonote_format_utils.h" #include "cryptonote_config.h" #include "crypto/crypto.h" #include "crypto/hash.h" #include "ringct/rctSigs.h" #undef MONERO_DEFAULT_LOG_CATEGORY #define MONERO_DEFAULT_LOG_CATEGORY "cn" #define ENCRYPTED_PAYMENT_ID_TAIL 0x8d // #define ENABLE_HASH_CASH_INTEGRITY_CHECK using namespace crypto; static const uint64_t valid_decomposed_outputs[] = { (uint64_t)1, (uint64_t)2, (uint64_t)3, (uint64_t)4, (uint64_t)5, (uint64_t)6, (uint64_t)7, (uint64_t)8, (uint64_t)9, // 1 piconero (uint64_t)10, (uint64_t)20, (uint64_t)30, (uint64_t)40, (uint64_t)50, (uint64_t)60, (uint64_t)70, (uint64_t)80, (uint64_t)90, (uint64_t)100, (uint64_t)200, (uint64_t)300, (uint64_t)400, (uint64_t)500, (uint64_t)600, (uint64_t)700, (uint64_t)800, (uint64_t)900, (uint64_t)1000, (uint64_t)2000, (uint64_t)3000, (uint64_t)4000, (uint64_t)5000, (uint64_t)6000, (uint64_t)7000, (uint64_t)8000, (uint64_t)9000, (uint64_t)10000, (uint64_t)20000, (uint64_t)30000, (uint64_t)40000, (uint64_t)50000, (uint64_t)60000, (uint64_t)70000, (uint64_t)80000, (uint64_t)90000, (uint64_t)100000, (uint64_t)200000, (uint64_t)300000, (uint64_t)400000, (uint64_t)500000, (uint64_t)600000, (uint64_t)700000, (uint64_t)800000, (uint64_t)900000, (uint64_t)1000000, (uint64_t)2000000, (uint64_t)3000000, (uint64_t)4000000, (uint64_t)5000000, (uint64_t)6000000, (uint64_t)7000000, (uint64_t)8000000, (uint64_t)9000000, // 1 micronero (uint64_t)10000000, (uint64_t)20000000, (uint64_t)30000000, (uint64_t)40000000, (uint64_t)50000000, (uint64_t)60000000, (uint64_t)70000000, (uint64_t)80000000, (uint64_t)90000000, (uint64_t)100000000, (uint64_t)200000000, (uint64_t)300000000, (uint64_t)400000000, (uint64_t)500000000, (uint64_t)600000000, (uint64_t)700000000, (uint64_t)800000000, (uint64_t)900000000, (uint64_t)1000000000, (uint64_t)2000000000, (uint64_t)3000000000, (uint64_t)4000000000, (uint64_t)5000000000, (uint64_t)6000000000, (uint64_t)7000000000, (uint64_t)8000000000, (uint64_t)9000000000, (uint64_t)10000000000, (uint64_t)20000000000, (uint64_t)30000000000, (uint64_t)40000000000, (uint64_t)50000000000, (uint64_t)60000000000, (uint64_t)70000000000, (uint64_t)80000000000, (uint64_t)90000000000, (uint64_t)100000000000, (uint64_t)200000000000, (uint64_t)300000000000, (uint64_t)400000000000, (uint64_t)500000000000, (uint64_t)600000000000, (uint64_t)700000000000, (uint64_t)800000000000, (uint64_t)900000000000, (uint64_t)1000000000000, (uint64_t)2000000000000, (uint64_t)3000000000000, (uint64_t)4000000000000, (uint64_t)5000000000000, (uint64_t)6000000000000, (uint64_t)7000000000000, (uint64_t)8000000000000, (uint64_t)9000000000000, // 1 monero (uint64_t)10000000000000, (uint64_t)20000000000000, (uint64_t)30000000000000, (uint64_t)40000000000000, (uint64_t)50000000000000, (uint64_t)60000000000000, (uint64_t)70000000000000, (uint64_t)80000000000000, (uint64_t)90000000000000, (uint64_t)100000000000000, (uint64_t)200000000000000, (uint64_t)300000000000000, (uint64_t)400000000000000, (uint64_t)500000000000000, (uint64_t)600000000000000, (uint64_t)700000000000000, (uint64_t)800000000000000, (uint64_t)900000000000000, (uint64_t)1000000000000000, (uint64_t)2000000000000000, (uint64_t)3000000000000000, (uint64_t)4000000000000000, (uint64_t)5000000000000000, (uint64_t)6000000000000000, (uint64_t)7000000000000000, (uint64_t)8000000000000000, (uint64_t)9000000000000000, (uint64_t)10000000000000000, (uint64_t)20000000000000000, (uint64_t)30000000000000000, (uint64_t)40000000000000000, (uint64_t)50000000000000000, (uint64_t)60000000000000000, (uint64_t)70000000000000000, (uint64_t)80000000000000000, (uint64_t)90000000000000000, (uint64_t)100000000000000000, (uint64_t)200000000000000000, (uint64_t)300000000000000000, (uint64_t)400000000000000000, (uint64_t)500000000000000000, (uint64_t)600000000000000000, (uint64_t)700000000000000000, (uint64_t)800000000000000000, (uint64_t)900000000000000000, (uint64_t)1000000000000000000, (uint64_t)2000000000000000000, (uint64_t)3000000000000000000, (uint64_t)4000000000000000000, (uint64_t)5000000000000000000, (uint64_t)6000000000000000000, (uint64_t)7000000000000000000, (uint64_t)8000000000000000000, (uint64_t)9000000000000000000, // 1 meganero (uint64_t)10000000000000000000ull }; static std::atomic default_decimal_point(CRYPTONOTE_DISPLAY_DECIMAL_POINT); static std::atomic tx_hashes_calculated_count(0); static std::atomic tx_hashes_cached_count(0); static std::atomic block_hashes_calculated_count(0); static std::atomic block_hashes_cached_count(0); namespace cryptonote { //--------------------------------------------------------------- void get_transaction_prefix_hash(const transaction_prefix& tx, crypto::hash& h) { std::ostringstream s; binary_archive a(s); ::serialization::serialize(a, const_cast(tx)); crypto::cn_fast_hash(s.str().data(), s.str().size(), h); } //--------------------------------------------------------------- crypto::hash get_transaction_prefix_hash(const transaction_prefix& tx) { crypto::hash h = null_hash; get_transaction_prefix_hash(tx, h); return h; } //--------------------------------------------------------------- bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx) { std::stringstream ss; ss << tx_blob; binary_archive ba(ss); bool r = ::serialization::serialize(ba, tx); CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob"); tx.invalidate_hashes(); return true; } //--------------------------------------------------------------- bool parse_and_validate_tx_base_from_blob(const blobdata& tx_blob, transaction& tx) { std::stringstream ss; ss << tx_blob; binary_archive ba(ss); bool r = tx.serialize_base(ba); CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob"); return true; } //--------------------------------------------------------------- bool parse_and_validate_tx_from_blob(const blobdata& tx_blob, transaction& tx, crypto::hash& tx_hash, crypto::hash& tx_prefix_hash) { std::stringstream ss; ss << tx_blob; binary_archive ba(ss); bool r = ::serialization::serialize(ba, tx); CHECK_AND_ASSERT_MES(r, false, "Failed to parse transaction from blob"); tx.invalidate_hashes(); //TODO: validate tx get_transaction_hash(tx, tx_hash); get_transaction_prefix_hash(tx, tx_prefix_hash); return true; } //--------------------------------------------------------------- crypto::secret_key get_subaddress_secret_key(const crypto::secret_key& a, const subaddress_index& index) { const char prefix[] = "SubAddr"; char data[sizeof(prefix) + sizeof(crypto::secret_key) + sizeof(subaddress_index)]; memcpy(data, prefix, sizeof(prefix)); memcpy(data + sizeof(prefix), &a, sizeof(crypto::secret_key)); memcpy(data + sizeof(prefix) + sizeof(crypto::secret_key), &index, sizeof(subaddress_index)); crypto::secret_key m; crypto::hash_to_scalar(data, sizeof(data), m); return m; } //--------------------------------------------------------------- bool generate_key_image_helper(const account_keys& ack, const std::unordered_map& subaddresses, const crypto::public_key& out_key, const crypto::public_key& tx_public_key, const std::vector& additional_tx_public_keys, size_t real_output_index, keypair& in_ephemeral, crypto::key_image& ki) { crypto::key_derivation recv_derivation = AUTO_VAL_INIT(recv_derivation); bool r = crypto::generate_key_derivation(tx_public_key, ack.m_view_secret_key, recv_derivation); CHECK_AND_ASSERT_MES(r, false, "key image helper: failed to generate_key_derivation(" << tx_public_key << ", " << ack.m_view_secret_key << ")"); std::vector additional_recv_derivations; for (size_t i = 0; i < additional_tx_public_keys.size(); ++i) { crypto::key_derivation additional_recv_derivation = AUTO_VAL_INIT(additional_recv_derivation); r = crypto::generate_key_derivation(additional_tx_public_keys[i], ack.m_view_secret_key, additional_recv_derivation); CHECK_AND_ASSERT_MES(r, false, "key image helper: failed to generate_key_derivation(" << additional_tx_public_keys[i] << ", " << ack.m_view_secret_key << ")"); additional_recv_derivations.push_back(additional_recv_derivation); } boost::optional subaddr_recv_info = is_out_to_acc_precomp(subaddresses, out_key, recv_derivation, additional_recv_derivations, real_output_index); CHECK_AND_ASSERT_MES(subaddr_recv_info, false, "key image helper: given output pubkey doesn't seem to belong to this address"); return generate_key_image_helper_precomp(ack, out_key, subaddr_recv_info->derivation, real_output_index, subaddr_recv_info->index, in_ephemeral, ki); } //--------------------------------------------------------------- bool generate_key_image_helper_precomp(const account_keys& ack, const crypto::public_key& out_key, const crypto::key_derivation& recv_derivation, size_t real_output_index, const subaddress_index& received_index, keypair& in_ephemeral, crypto::key_image& ki) { if (ack.m_spend_secret_key == crypto::null_skey) { // for watch-only wallet, simply copy the known output pubkey in_ephemeral.pub = out_key; in_ephemeral.sec = crypto::null_skey; } else { // derive secret key with subaddress - step 1: original CN derivation crypto::secret_key scalar_step1; crypto::derive_secret_key(recv_derivation, real_output_index, ack.m_spend_secret_key, scalar_step1); // computes Hs(a*R || idx) + b // step 2: add Hs(a || index_major || index_minor) crypto::secret_key scalar_step2; if (received_index.is_zero()) { scalar_step2 = scalar_step1; // treat index=(0,0) as a special case representing the main address } else { crypto::secret_key m = get_subaddress_secret_key(ack.m_view_secret_key, received_index); sc_add((unsigned char*)&scalar_step2, (unsigned char*)&scalar_step1, (unsigned char*)&m); } in_ephemeral.sec = scalar_step2; crypto::secret_key_to_public_key(in_ephemeral.sec, in_ephemeral.pub); CHECK_AND_ASSERT_MES(in_ephemeral.pub == out_key, false, "key image helper precomp: given output pubkey doesn't match the derived one"); } crypto::generate_key_image(in_ephemeral.pub, in_ephemeral.sec, ki); return true; } //--------------------------------------------------------------- uint64_t power_integral(uint64_t a, uint64_t b) { if(b == 0) return 1; uint64_t total = a; for(uint64_t i = 1; i != b; i++) total *= a; return total; } //--------------------------------------------------------------- bool parse_amount(uint64_t& amount, const std::string& str_amount_) { std::string str_amount = str_amount_; boost::algorithm::trim(str_amount); size_t point_index = str_amount.find_first_of('.'); size_t fraction_size; if (std::string::npos != point_index) { fraction_size = str_amount.size() - point_index - 1; while (default_decimal_point < fraction_size && '0' == str_amount.back()) { str_amount.erase(str_amount.size() - 1, 1); --fraction_size; } if (default_decimal_point < fraction_size) return false; str_amount.erase(point_index, 1); } else { fraction_size = 0; } if (str_amount.empty()) return false; if (fraction_size < default_decimal_point) { str_amount.append(default_decimal_point - fraction_size, '0'); } return string_tools::get_xtype_from_string(amount, str_amount); } //--------------------------------------------------------------- bool get_tx_fee(const transaction& tx, uint64_t & fee) { if (tx.version > 1) { fee = tx.rct_signatures.txnFee; return true; } uint64_t amount_in = 0; uint64_t amount_out = 0; for(auto& in: tx.vin) { CHECK_AND_ASSERT_MES(in.type() == typeid(txin_to_key), 0, "unexpected type id in transaction"); amount_in += boost::get(in).amount; } for(auto& o: tx.vout) amount_out += o.amount; CHECK_AND_ASSERT_MES(amount_in >= amount_out, false, "transaction spend (" <& tx_extra, std::vector& tx_extra_fields) { tx_extra_fields.clear(); if(tx_extra.empty()) return true; std::string extra_str(reinterpret_cast(tx_extra.data()), tx_extra.size()); std::istringstream iss(extra_str); binary_archive ar(iss); bool eof = false; while (!eof) { tx_extra_field field; bool r = ::do_serialize(ar, field); CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast(tx_extra.data()), tx_extra.size()))); tx_extra_fields.push_back(field); std::ios_base::iostate state = iss.rdstate(); eof = (EOF == iss.peek()); iss.clear(state); } CHECK_AND_NO_ASSERT_MES_L1(::serialization::check_stream_state(ar), false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast(tx_extra.data()), tx_extra.size()))); return true; } //--------------------------------------------------------------- crypto::public_key get_tx_pub_key_from_extra(const std::vector& tx_extra, size_t pk_index) { std::vector tx_extra_fields; parse_tx_extra(tx_extra, tx_extra_fields); tx_extra_pub_key pub_key_field; if(!find_tx_extra_field_by_type(tx_extra_fields, pub_key_field, pk_index)) return null_pkey; return pub_key_field.pub_key; } //--------------------------------------------------------------- crypto::public_key get_tx_pub_key_from_extra(const transaction_prefix& tx_prefix, size_t pk_index) { return get_tx_pub_key_from_extra(tx_prefix.extra, pk_index); } //--------------------------------------------------------------- crypto::public_key get_tx_pub_key_from_extra(const transaction& tx, size_t pk_index) { return get_tx_pub_key_from_extra(tx.extra, pk_index); } //--------------------------------------------------------------- bool add_tx_pub_key_to_extra(transaction& tx, const crypto::public_key& tx_pub_key) { return add_tx_pub_key_to_extra(tx.extra, tx_pub_key); } //--------------------------------------------------------------- bool add_tx_pub_key_to_extra(transaction_prefix& tx, const crypto::public_key& tx_pub_key) { return add_tx_pub_key_to_extra(tx.extra, tx_pub_key); } //--------------------------------------------------------------- bool add_tx_pub_key_to_extra(std::vector& tx_extra, const crypto::public_key& tx_pub_key) { tx_extra.resize(tx_extra.size() + 1 + sizeof(crypto::public_key)); tx_extra[tx_extra.size() - 1 - sizeof(crypto::public_key)] = TX_EXTRA_TAG_PUBKEY; *reinterpret_cast(&tx_extra[tx_extra.size() - sizeof(crypto::public_key)]) = tx_pub_key; return true; } //--------------------------------------------------------------- std::vector get_additional_tx_pub_keys_from_extra(const std::vector& tx_extra) { // parse std::vector tx_extra_fields; parse_tx_extra(tx_extra, tx_extra_fields); // find corresponding field tx_extra_additional_pub_keys additional_pub_keys; if(!find_tx_extra_field_by_type(tx_extra_fields, additional_pub_keys)) return {}; return additional_pub_keys.data; } //--------------------------------------------------------------- std::vector get_additional_tx_pub_keys_from_extra(const transaction_prefix& tx) { return get_additional_tx_pub_keys_from_extra(tx.extra); } //--------------------------------------------------------------- bool add_additional_tx_pub_keys_to_extra(std::vector& tx_extra, const std::vector& additional_pub_keys) { // convert to variant tx_extra_field field = tx_extra_additional_pub_keys{ additional_pub_keys }; // serialize std::ostringstream oss; binary_archive ar(oss); bool r = ::do_serialize(ar, field); CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to serialize tx extra additional tx pub keys"); // append std::string tx_extra_str = oss.str(); size_t pos = tx_extra.size(); tx_extra.resize(tx_extra.size() + tx_extra_str.size()); memcpy(&tx_extra[pos], tx_extra_str.data(), tx_extra_str.size()); return true; } //--------------------------------------------------------------- bool add_extra_nonce_to_tx_extra(std::vector& tx_extra, const blobdata& extra_nonce) { CHECK_AND_ASSERT_MES(extra_nonce.size() <= TX_EXTRA_NONCE_MAX_COUNT, false, "extra nonce could be 255 bytes max"); size_t start_pos = tx_extra.size(); tx_extra.resize(tx_extra.size() + 2 + extra_nonce.size()); //write tag tx_extra[start_pos] = TX_EXTRA_NONCE; //write len ++start_pos; tx_extra[start_pos] = static_cast(extra_nonce.size()); //write data ++start_pos; memcpy(&tx_extra[start_pos], extra_nonce.data(), extra_nonce.size()); return true; } //--------------------------------------------------------------- bool remove_field_from_tx_extra(std::vector& tx_extra, const std::type_info &type) { if (tx_extra.empty()) return true; std::string extra_str(reinterpret_cast(tx_extra.data()), tx_extra.size()); std::istringstream iss(extra_str); binary_archive ar(iss); std::ostringstream oss; binary_archive newar(oss); bool eof = false; while (!eof) { tx_extra_field field; bool r = ::do_serialize(ar, field); CHECK_AND_NO_ASSERT_MES_L1(r, false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast(tx_extra.data()), tx_extra.size()))); if (field.type() != type) ::do_serialize(newar, field); std::ios_base::iostate state = iss.rdstate(); eof = (EOF == iss.peek()); iss.clear(state); } CHECK_AND_NO_ASSERT_MES_L1(::serialization::check_stream_state(ar), false, "failed to deserialize extra field. extra = " << string_tools::buff_to_hex_nodelimer(std::string(reinterpret_cast(tx_extra.data()), tx_extra.size()))); tx_extra.clear(); std::string s = oss.str(); tx_extra.reserve(s.size()); std::copy(s.begin(), s.end(), std::back_inserter(tx_extra)); return true; } //--------------------------------------------------------------- void set_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash& payment_id) { extra_nonce.clear(); extra_nonce.push_back(TX_EXTRA_NONCE_PAYMENT_ID); const uint8_t* payment_id_ptr = reinterpret_cast(&payment_id); std::copy(payment_id_ptr, payment_id_ptr + sizeof(payment_id), std::back_inserter(extra_nonce)); } //--------------------------------------------------------------- void set_encrypted_payment_id_to_tx_extra_nonce(blobdata& extra_nonce, const crypto::hash8& payment_id) { extra_nonce.clear(); extra_nonce.push_back(TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID); const uint8_t* payment_id_ptr = reinterpret_cast(&payment_id); std::copy(payment_id_ptr, payment_id_ptr + sizeof(payment_id), std::back_inserter(extra_nonce)); } //--------------------------------------------------------------- bool get_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash& payment_id) { if(sizeof(crypto::hash) + 1 != extra_nonce.size()) return false; if(TX_EXTRA_NONCE_PAYMENT_ID != extra_nonce[0]) return false; payment_id = *reinterpret_cast(extra_nonce.data() + 1); return true; } //--------------------------------------------------------------- bool get_encrypted_payment_id_from_tx_extra_nonce(const blobdata& extra_nonce, crypto::hash8& payment_id) { if(sizeof(crypto::hash8) + 1 != extra_nonce.size()) return false; if (TX_EXTRA_NONCE_ENCRYPTED_PAYMENT_ID != extra_nonce[0]) return false; payment_id = *reinterpret_cast(extra_nonce.data() + 1); return true; } //--------------------------------------------------------------- bool encrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) { crypto::key_derivation derivation; crypto::hash hash; char data[33]; /* A hash, and an extra byte */ if (!generate_key_derivation(public_key, secret_key, derivation)) return false; memcpy(data, &derivation, 32); data[32] = ENCRYPTED_PAYMENT_ID_TAIL; cn_fast_hash(data, 33, hash); for (size_t b = 0; b < 8; ++b) payment_id.data[b] ^= hash.data[b]; return true; } bool decrypt_payment_id(crypto::hash8 &payment_id, const crypto::public_key &public_key, const crypto::secret_key &secret_key) { // Encryption and decryption are the same operation (xor with a key) return encrypt_payment_id(payment_id, public_key, secret_key); } //--------------------------------------------------------------- bool get_inputs_money_amount(const transaction& tx, uint64_t& money) { money = 0; for(const auto& in: tx.vin) { CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, false); money += tokey_in.amount; } return true; } //--------------------------------------------------------------- uint64_t get_block_height(const block& b) { CHECK_AND_ASSERT_MES(b.miner_tx.vin.size() == 1, 0, "wrong miner tx in block: " << get_block_hash(b) << ", b.miner_tx.vin.size() != 1"); CHECKED_GET_SPECIFIC_VARIANT(b.miner_tx.vin[0], const txin_gen, coinbase_in, 0); return coinbase_in.height; } //--------------------------------------------------------------- bool check_inputs_types_supported(const transaction& tx) { for(const auto& in: tx.vin) { CHECK_AND_ASSERT_MES(in.type() == typeid(txin_to_key), false, "wrong variant type: " << in.type().name() << ", expected " << typeid(txin_to_key).name() << ", in transaction id=" << get_transaction_hash(tx)); } return true; } //----------------------------------------------------------------------------------------------- bool check_outs_valid(const transaction& tx) { for(const tx_out& out: tx.vout) { CHECK_AND_ASSERT_MES(out.target.type() == typeid(txout_to_key), false, "wrong variant type: " << out.target.type().name() << ", expected " << typeid(txout_to_key).name() << ", in transaction id=" << get_transaction_hash(tx)); if (tx.version == 1) { CHECK_AND_NO_ASSERT_MES(0 < out.amount, false, "zero amount output in transaction id=" << get_transaction_hash(tx)); } if(!check_key(boost::get(out.target).key)) return false; } return true; } //----------------------------------------------------------------------------------------------- bool check_money_overflow(const transaction& tx) { return check_inputs_overflow(tx) && check_outs_overflow(tx); } //--------------------------------------------------------------- bool check_inputs_overflow(const transaction& tx) { uint64_t money = 0; for(const auto& in: tx.vin) { CHECKED_GET_SPECIFIC_VARIANT(in, const txin_to_key, tokey_in, false); if(money > tokey_in.amount + money) return false; money += tokey_in.amount; } return true; } //--------------------------------------------------------------- bool check_outs_overflow(const transaction& tx) { uint64_t money = 0; for(const auto& o: tx.vout) { if(money > o.amount + money) return false; money += o.amount; } return true; } //--------------------------------------------------------------- uint64_t get_outs_money_amount(const transaction& tx) { uint64_t outputs_amount = 0; for(const auto& o: tx.vout) outputs_amount += o.amount; return outputs_amount; } //--------------------------------------------------------------- std::string short_hash_str(const crypto::hash& h) { std::string res = string_tools::pod_to_hex(h); CHECK_AND_ASSERT_MES(res.size() == 64, res, "wrong hash256 with string_tools::pod_to_hex conversion"); auto erased_pos = res.erase(8, 48); res.insert(8, "...."); return res; } //--------------------------------------------------------------- bool is_out_to_acc(const account_keys& acc, const txout_to_key& out_key, const crypto::public_key& tx_pub_key, const std::vector& additional_tx_pub_keys, size_t output_index) { crypto::key_derivation derivation; generate_key_derivation(tx_pub_key, acc.m_view_secret_key, derivation); crypto::public_key pk; derive_public_key(derivation, output_index, acc.m_account_address.m_spend_public_key, pk); if (pk == out_key.key) return true; // try additional tx pubkeys if available if (!additional_tx_pub_keys.empty()) { CHECK_AND_ASSERT_MES(output_index < additional_tx_pub_keys.size(), false, "wrong number of additional tx pubkeys"); generate_key_derivation(additional_tx_pub_keys[output_index], acc.m_view_secret_key, derivation); derive_public_key(derivation, output_index, acc.m_account_address.m_spend_public_key, pk); return pk == out_key.key; } return false; } //--------------------------------------------------------------- boost::optional is_out_to_acc_precomp(const std::unordered_map& subaddresses, const crypto::public_key& out_key, const crypto::key_derivation& derivation, const std::vector& additional_derivations, size_t output_index) { // try the shared tx pubkey crypto::public_key subaddress_spendkey; derive_subaddress_public_key(out_key, derivation, output_index, subaddress_spendkey); auto found = subaddresses.find(subaddress_spendkey); if (found != subaddresses.end()) return subaddress_receive_info{ found->second, derivation }; // try additional tx pubkeys if available if (!additional_derivations.empty()) { CHECK_AND_ASSERT_MES(output_index < additional_derivations.size(), boost::none, "wrong number of additional derivations"); derive_subaddress_public_key(out_key, additional_derivations[output_index], output_index, subaddress_spendkey); found = subaddresses.find(subaddress_spendkey); if (found != subaddresses.end()) return subaddress_receive_info{ found->second, additional_derivations[output_index] }; } return boost::none; } //--------------------------------------------------------------- bool lookup_acc_outs(const account_keys& acc, const transaction& tx, std::vector& outs, uint64_t& money_transfered) { crypto::public_key tx_pub_key = get_tx_pub_key_from_extra(tx); if(null_pkey == tx_pub_key) return false; std::vector additional_tx_pub_keys = get_additional_tx_pub_keys_from_extra(tx); return lookup_acc_outs(acc, tx, tx_pub_key, additional_tx_pub_keys, outs, money_transfered); } //--------------------------------------------------------------- bool lookup_acc_outs(const account_keys& acc, const transaction& tx, const crypto::public_key& tx_pub_key, const std::vector& additional_tx_pub_keys, std::vector& outs, uint64_t& money_transfered) { CHECK_AND_ASSERT_MES(additional_tx_pub_keys.empty() || additional_tx_pub_keys.size() == tx.vout.size(), false, "wrong number of additional pubkeys" ); money_transfered = 0; size_t i = 0; for(const tx_out& o: tx.vout) { CHECK_AND_ASSERT_MES(o.target.type() == typeid(txout_to_key), false, "wrong type id in transaction out" ); if(is_out_to_acc(acc, boost::get(o.target), tx_pub_key, additional_tx_pub_keys, i)) { outs.push_back(i); money_transfered += o.amount; } i++; } return true; } //--------------------------------------------------------------- void get_blob_hash(const blobdata& blob, crypto::hash& res) { cn_fast_hash(blob.data(), blob.size(), res); } //--------------------------------------------------------------- void set_default_decimal_point(unsigned int decimal_point) { switch (decimal_point) { case 12: case 9: case 6: case 3: case 0: default_decimal_point = decimal_point; break; default: ASSERT_MES_AND_THROW("Invalid decimal point specification: " << decimal_point); } } //--------------------------------------------------------------- unsigned int get_default_decimal_point() { return default_decimal_point; } //--------------------------------------------------------------- std::string get_unit(unsigned int decimal_point) { if (decimal_point == (unsigned int)-1) decimal_point = default_decimal_point; switch (std::atomic_load(&default_decimal_point)) { case 12: return "monero"; case 9: return "millinero"; case 6: return "micronero"; case 3: return "nanonero"; case 0: return "piconero"; default: ASSERT_MES_AND_THROW("Invalid decimal point specification: " << default_decimal_point); } } //--------------------------------------------------------------- std::string print_money(uint64_t amount, unsigned int decimal_point) { if (decimal_point == (unsigned int)-1) decimal_point = default_decimal_point; std::string s = std::to_string(amount); if(s.size() < decimal_point+1) { s.insert(0, decimal_point+1 - s.size(), '0'); } if (decimal_point > 0) s.insert(s.size() - decimal_point, "."); return s; } //--------------------------------------------------------------- crypto::hash get_blob_hash(const blobdata& blob) { crypto::hash h = null_hash; get_blob_hash(blob, h); return h; } //--------------------------------------------------------------- crypto::hash get_transaction_hash(const transaction& t) { crypto::hash h = null_hash; get_transaction_hash(t, h, NULL); return h; } //--------------------------------------------------------------- bool get_transaction_hash(const transaction& t, crypto::hash& res) { return get_transaction_hash(t, res, NULL); } //--------------------------------------------------------------- bool calculate_transaction_hash(const transaction& t, crypto::hash& res, size_t* blob_size) { // v1 transactions hash the entire blob if (t.version == 1) { size_t ignored_blob_size, &blob_size_ref = blob_size ? *blob_size : ignored_blob_size; return get_object_hash(t, res, blob_size_ref); } // v2 transactions hash different parts together, than hash the set of those hashes crypto::hash hashes[3]; // prefix get_transaction_prefix_hash(t, hashes[0]); transaction &tt = const_cast(t); // base rct { std::stringstream ss; binary_archive ba(ss); const size_t inputs = t.vin.size(); const size_t outputs = t.vout.size(); bool r = tt.rct_signatures.serialize_rctsig_base(ba, inputs, outputs); CHECK_AND_ASSERT_MES(r, false, "Failed to serialize rct signatures base"); cryptonote::get_blob_hash(ss.str(), hashes[1]); } // prunable rct if (t.rct_signatures.type == rct::RCTTypeNull) { hashes[2] = crypto::null_hash; } else { std::stringstream ss; binary_archive ba(ss); const size_t inputs = t.vin.size(); const size_t outputs = t.vout.size(); const size_t mixin = t.vin.empty() ? 0 : t.vin[0].type() == typeid(txin_to_key) ? boost::get(t.vin[0]).key_offsets.size() - 1 : 0; bool r = tt.rct_signatures.p.serialize_rctsig_prunable(ba, t.rct_signatures.type, inputs, outputs, mixin); CHECK_AND_ASSERT_MES(r, false, "Failed to serialize rct signatures prunable"); cryptonote::get_blob_hash(ss.str(), hashes[2]); } // the tx hash is the hash of the 3 hashes res = cn_fast_hash(hashes, sizeof(hashes)); // we still need the size if (blob_size) *blob_size = get_object_blobsize(t); return true; } //--------------------------------------------------------------- bool get_transaction_hash(const transaction& t, crypto::hash& res, size_t* blob_size) { if (t.is_hash_valid()) { #ifdef ENABLE_HASH_CASH_INTEGRITY_CHECK CHECK_AND_ASSERT_THROW_MES(!calculate_transaction_hash(t, res, blob_size) || t.hash == res, "tx hash cash integrity failure"); #endif res = t.hash; if (blob_size) { if (!t.is_blob_size_valid()) { t.blob_size = get_object_blobsize(t); t.set_blob_size_valid(true); } *blob_size = t.blob_size; } ++tx_hashes_cached_count; return true; } ++tx_hashes_calculated_count; bool ret = calculate_transaction_hash(t, res, blob_size); if (!ret) return false; t.hash = res; t.set_hash_valid(true); if (blob_size) { t.blob_size = *blob_size; t.set_blob_size_valid(true); } return true; } //--------------------------------------------------------------- bool get_transaction_hash(const transaction& t, crypto::hash& res, size_t& blob_size) { return get_transaction_hash(t, res, &blob_size); } //--------------------------------------------------------------- blobdata get_block_hashing_blob(const block& b) { blobdata blob = t_serializable_object_to_blob(static_cast(b)); crypto::hash tree_root_hash = get_tx_tree_hash(b); blob.append(reinterpret_cast(&tree_root_hash), sizeof(tree_root_hash)); blob.append(tools::get_varint_data(b.tx_hashes.size()+1)); return blob; } //--------------------------------------------------------------- bool calculate_block_hash(const block& b, crypto::hash& res) { // EXCEPTION FOR BLOCK 202612 const std::string correct_blob_hash_202612 = "3a8a2b3a29b50fc86ff73dd087ea43c6f0d6b8f936c849194d5c84c737903966"; const std::string existing_block_id_202612 = "bbd604d2ba11ba27935e006ed39c9bfdd99b76bf4a50654bc1e1e61217962698"; crypto::hash block_blob_hash = get_blob_hash(block_to_blob(b)); if (string_tools::pod_to_hex(block_blob_hash) == correct_blob_hash_202612) { string_tools::hex_to_pod(existing_block_id_202612, res); return true; } bool hash_result = get_object_hash(get_block_hashing_blob(b), res); if (hash_result) { // make sure that we aren't looking at a block with the 202612 block id but not the correct blobdata if (string_tools::pod_to_hex(res) == existing_block_id_202612) { LOG_ERROR("Block with block id for 202612 but incorrect block blob hash found!"); res = null_hash; return false; } } return hash_result; } //--------------------------------------------------------------- bool get_block_hash(const block& b, crypto::hash& res) { if (b.is_hash_valid()) { #ifdef ENABLE_HASH_CASH_INTEGRITY_CHECK CHECK_AND_ASSERT_THROW_MES(!calculate_block_hash(b, res) || b.hash == res, "block hash cash integrity failure"); #endif res = b.hash; ++block_hashes_cached_count; return true; } ++block_hashes_calculated_count; bool ret = calculate_block_hash(b, res); if (!ret) return false; b.hash = res; b.set_hash_valid(true); return true; } //--------------------------------------------------------------- crypto::hash get_block_hash(const block& b) { crypto::hash p = null_hash; get_block_hash(b, p); return p; } //--------------------------------------------------------------- bool get_block_longhash(const block& b, crypto::hash& res, uint64_t height) { // block 202612 bug workaround const std::string longhash_202612 = "84f64766475d51837ac9efbef1926486e58563c95a19fef4aec3254f03000000"; if (height == 202612) { string_tools::hex_to_pod(longhash_202612, res); return true; } blobdata bd = get_block_hashing_blob(b); crypto::cn_slow_hash(bd.data(), bd.size(), res); return true; } //--------------------------------------------------------------- std::vector relative_output_offsets_to_absolute(const std::vector& off) { std::vector res = off; for(size_t i = 1; i < res.size(); i++) res[i] += res[i-1]; return res; } //--------------------------------------------------------------- std::vector absolute_output_offsets_to_relative(const std::vector& off) { std::vector res = off; if(!off.size()) return res; std::sort(res.begin(), res.end());//just to be sure, actually it is already should be sorted for(size_t i = res.size()-1; i != 0; i--) res[i] -= res[i-1]; return res; } //--------------------------------------------------------------- crypto::hash get_block_longhash(const block& b, uint64_t height) { crypto::hash p = null_hash; get_block_longhash(b, p, height); return p; } //--------------------------------------------------------------- bool parse_and_validate_block_from_blob(const blobdata& b_blob, block& b) { std::stringstream ss; ss << b_blob; binary_archive ba(ss); bool r = ::serialization::serialize(ba, b); CHECK_AND_ASSERT_MES(r, false, "Failed to parse block from blob"); b.invalidate_hashes(); b.miner_tx.invalidate_hashes(); return true; } //--------------------------------------------------------------- blobdata block_to_blob(const block& b) { return t_serializable_object_to_blob(b); } //--------------------------------------------------------------- bool block_to_blob(const block& b, blobdata& b_blob) { return t_serializable_object_to_blob(b, b_blob); } //--------------------------------------------------------------- blobdata tx_to_blob(const transaction& tx) { return t_serializable_object_to_blob(tx); } //--------------------------------------------------------------- bool tx_to_blob(const transaction& tx, blobdata& b_blob) { return t_serializable_object_to_blob(tx, b_blob); } //--------------------------------------------------------------- void get_tx_tree_hash(const std::vector& tx_hashes, crypto::hash& h) { tree_hash(tx_hashes.data(), tx_hashes.size(), h); } //--------------------------------------------------------------- crypto::hash get_tx_tree_hash(const std::vector& tx_hashes) { crypto::hash h = null_hash; get_tx_tree_hash(tx_hashes, h); return h; } //--------------------------------------------------------------- crypto::hash get_tx_tree_hash(const block& b) { std::vector txs_ids; crypto::hash h = null_hash; size_t bl_sz = 0; get_transaction_hash(b.miner_tx, h, bl_sz); txs_ids.push_back(h); for(auto& th: b.tx_hashes) txs_ids.push_back(th); return get_tx_tree_hash(txs_ids); } //--------------------------------------------------------------- bool is_valid_decomposed_amount(uint64_t amount) { const uint64_t *begin = valid_decomposed_outputs; const uint64_t *end = valid_decomposed_outputs + sizeof(valid_decomposed_outputs) / sizeof(valid_decomposed_outputs[0]); return std::binary_search(begin, end, amount); } //--------------------------------------------------------------- void get_hash_stats(uint64_t &tx_hashes_calculated, uint64_t &tx_hashes_cached, uint64_t &block_hashes_calculated, uint64_t & block_hashes_cached) { tx_hashes_calculated = tx_hashes_calculated_count; tx_hashes_cached = tx_hashes_cached_count; block_hashes_calculated = block_hashes_calculated_count; block_hashes_cached = block_hashes_cached_count; } //--------------------------------------------------------------- crypto::secret_key encrypt_key(crypto::secret_key key, const epee::wipeable_string &passphrase) { crypto::hash hash; crypto::cn_slow_hash(passphrase.data(), passphrase.size(), hash); sc_add((unsigned char*)key.data, (const unsigned char*)key.data, (const unsigned char*)hash.data); return key; } //--------------------------------------------------------------- crypto::secret_key decrypt_key(crypto::secret_key key, const epee::wipeable_string &passphrase) { crypto::hash hash; crypto::cn_slow_hash(passphrase.data(), passphrase.size(), hash); sc_sub((unsigned char*)key.data, (const unsigned char*)key.data, (const unsigned char*)hash.data); return key; } }