Before the fix, it processed all transactions in the mempool which could be very slow when mempool grows to several MBs in size. I observed `get_block_template_backlog` taking up to 15 seconds of CPU time under high mempool load.
After the fix, only transactions that can potentially be mined in the next block will be processed (a bit more than the current block median weight).
Adds the following:
- "get_miner_data" to RPC API
- "json-miner-data" to ZeroMQ subscriber contexts
Both provide the necessary data to create a custom block template. They are used by p2pool.
Data provided:
- major fork version
- current height
- previous block id
- RandomX seed hash
- network difficulty
- median block weight
- coins mined by the network so far
- mineable mempool transactions
A newly synced Alice sends a (typically quite small) list of
txids in the local tpxool to a random peer Bob, who then uses
the existing tx relay system to send Alice any tx in his txpool
which is not in the list Alice sent
If the peer (whether pruned or not itself) supports sending pruned blocks
to syncing nodes, the pruned version will be sent along with the hash
of the pruned data and the block weight. The original tx hashes can be
reconstructed from the pruned txes and theur prunable data hash. Those
hashes and the block weights are hashes and checked against the set of
precompiled hashes, ensuring the data we received is the original data.
It is currently not possible to use this system when not using the set
of precompiled hashes, since block weights can not otherwise be checked
for validity.
This is off by default for now, and is enabled by --sync-pruned-blocks
This happens for every historical tx when syncing, and the
unnecessary parsing is actually showing up on profile.
Since these are kept cached for just one block, this does
not increase memory usage after syncing.
This avoids constant rechecking of the same things each time
a miner asks for the block template. The tx pool maintains
a cookie to allow users to detect when the pool state changed,
which means the block template needs rebuilding.
This patch allows to filter out sensitive information for queries that rely on the pool state, when running in restricted mode.
This filtering is only applied to data sent back to RPC queries. Results of inline commands typed locally in the daemon are not affected.
In practice, when running with `--restricted-rpc`:
* get_transaction_pool will list relayed transactions with the fields "last relayed time" and "received time" set to zero.
* get_transaction_pool will not list transaction that have do_not_relay set to true, and will not list key images that are used only for such transactions
* get_transaction_pool_hashes.bin will not list such transaction
* get_transaction_pool_stats will not count such transactions in any of the aggregated values that are computed
The implementation does not make filtering the default, so developers should be mindful of this if they add new RPC functionality.
Fixes#2590.
Transactions in the txpool are marked when another transaction
is seen double spending one or more of its inputs.
This is then exposed wherever appropriate.
Note that being marked with this "double spend seen" flag does
NOT mean this transaction IS a double spend and will never be
mined: it just means that the network has seen at least another
transaction spending at least one of the same inputs, so care
should be taken to wait for a few confirmations before acting
upon that transaction (ie, mostly of use for merchants wanting
to accept unconfirmed transactions).
Structured {de-,}serialization methods for (many new) types
which are used for requests or responses in the RPC.
New types include RPC requests and responses, and structs which compose
types within those.
# Conflicts:
# src/cryptonote_core/blockchain.cpp