bcf3f6af fuzz_tests: catch unhandled exceptions (moneromooo-monero)
3ebd05d4 miner: restore stream flags after changing them (moneromooo-monero)
a093092e levin_protocol_handler_async: do not propagate exception through dtor (moneromooo-monero)
1eebb82b net_helper: do not propagate exceptions through dtor (moneromooo-monero)
fb6a3630 miner: do not propagate exceptions through dtor (moneromooo-monero)
2e2139ff epee: do not propagate exception through dtor (moneromooo-monero)
0749a8bd db_lmdb: do not propagate exceptions in dtor (moneromooo-monero)
1b0afeeb wallet_rpc_server: exit cleanly on unhandled exceptions (moneromooo-monero)
418a9936 unit_tests: catch unhandled exceptions (moneromooo-monero)
ea7f9543 threadpool: do not propagate exceptions through the dtor (moneromooo-monero)
6e855422 gen_multisig: nice exit on unhandled exception (moneromooo-monero)
53df2deb db_lmdb: catch error in mdb_stat calls during migration (moneromooo-monero)
e67016dd blockchain_blackball: catch failure to commit db transaction (moneromooo-monero)
661439f4 mlog: don't remove old logs if we failed to rename the current file (moneromooo-monero)
5fdcda50 easylogging++: test for NULL before dereference (moneromooo-monero)
7ece1550 performance_test: fix bad last argument calling add_arg (moneromooo-monero)
a085da32 unit_tests: add check for page size > 0 before dividing (moneromooo-monero)
d8b1ec8b unit_tests: use std::shared_ptr to shut coverity up about leaks (moneromooo-monero)
02563bf4 simplewallet: top level exception catcher to print nicer messages (moneromooo-monero)
c57a65b2 blockchain_blackball: fix shift range for 32 bit archs (moneromooo-monero)
56b50faa wallet: use wipeable_string in more places where a secret is used (moneromooo-monero)
07ec748c wipeable_string: add hex_to_pod function (moneromooo-monero)
Implemented strategy splits total amount into N equal parts,
where N is a specified number of outputs. If N > 1, dummy
change output is NOT created.
rebased by moneromooo
'outputs' option allows to specify the number of
separate outputs of smaller denomination that will
be created by sweep operation.
rebased by moneromooo
This makes it easier to avoid bugs on the caller side if errors are
represented by non empty strings.
This fixes the refresh height setting in new wallets when no daemon
is running.
- device name is a new wallet property
- full device name is now a bit more structured so we can address particular device vendor + device path. Example: 'Ledger', 'Trezor:udp', 'Trezor:udp:127.0.0.1:21324', 'Trezor:bridge:usb01'. The part before ':' identifies HW device implementation, the optional part after ':' is device path to look for.
- new --hw-device parameter added to the wallet, can name the hardware device
- device reconnect added
a54dbaee blockchain_blackball: add --force-chain-reaction-pass flag (moneromooo-monero)
44439c32 record blackballs as amount/offset, and add export ability (moneromooo-monero)
4bce935b blockchain_blackball: more optimizations (moneromooo-monero)
b66ba783 blockchain_blackball: do not process duplicate blockchains parts (moneromooo-monero)
639a3c01 blockchain_blackball: make it clear secondary passes are not incremental (moneromooo-monero)
eb8a51be blockchain_blackball: detect spent outputs by partial ring reuse (moneromooo-monero)
d6d276c6 blockchain_blackball: fix chain reaction phase in incremental mode (moneromooo-monero)
2b2a681b blockchain_blackball: avoid false positives for different amounts (moneromooo-monero)
80e4fef3 blockchain_blackball: set transaction looping txn to read only (moneromooo-monero)
4801d6b5 blockchain_blackball: add stats (moneromooo-monero)
846190fd blockchain_blackball: support pre-v2 databases (moneromooo-monero)
daa6cc7d blockchain_blackball: use LMDB for the cache (moneromooo-monero)
50cb370d ringdb: allow blackballing many outputs at once (moneromooo-monero)
62511df6 wallet2: fix refresh retry when a block/tx fails to parse (moneromooo-monero)
b219c24c wallet2: trim hash chain after fast refresh of hashes (moneromooo-monero)
5b6bcca3 wallet2: fix checking the wrong vector when adding hashes (moneromooo-monero)
29dea03 epee: resize vectors where possible in serialization (moneromooo-monero)
76affd9 epee: some speedup in parsing (moneromooo-monero)
dc6c069 db_lmdb: speedup the get_output_distribution common case (moneromooo-monero)
76ac5a8 wallet2: ask for a binary output distribution, for speed (moneromooo-monero)
The secret spend key is kept encrypted in memory, and
decrypted on the fly when needed.
Both spend and view secret keys are kept encrypted in a JSON
field in the keys file. This avoids leaving the keys in
memory due to being manipulated by the JSON I/O API.
Also added notes to WalletManager::verifyWalletPassword (which afaik seems unused
by anyone at the moment) regarding the need to unlock the keys file beforehand.
1d17647 epee.string_tools: add conversion between UTF-8 and UTF-16 (stoffu)
59de6f8 util: add file_locker class (stoffu)
3d623a8 wallet: prevent the same wallet file from being opened by multiple processes (stoffu)
This is based on how much an attacking miner stands to lose in block
rewardy by mining a private chain which double spends a payment.
This is not foolproof, since mining is based on luck, and breaks
down as the attacking miner nears 50% of the network hash rate,
and the estimation is based on a constant block reward.
key derivation and checking for incoming outputs are threaded
in batch before adding blocks to the local blockchain. Other
minor bits and bobs are also cached.
for privacy reasons, so an untrusted node can't easily track
wallets from IP address to IP address, etc. The granularity
is 1024 blocks, which is about a day and a half.
47fdb74 WalletApi: getMultisigInfo entry for gui wallets... (naughtyfox)
47fdb74 Refactored: work with wallet api statuses to make setting and getting operations atomic along with error strings (naughtyfox)
ffeeefde speedup get_output_histogram for all amounts when min_count > 0 (moneromooo-monero)
2dae0f20 wallet2: add missing parameters to get_output_histogram (moneromooo-monero)
875c1cab wallet2: increase rpc timeout for get_output_distribution (moneromooo-monero)
70f23217 add top height to get_output_distribution, and cache it for rct (moneromooo-monero)
8c7363fb rpc: add missing perf timer for get_output_distribution (moneromooo-monero)
When additional keys was needed, the TX scan failed because the
derivation data was always recomputed with the main tx_key and not
the corresponding additional one.
Moreover this patch avoid perf decreasing when not using HW device.
73951cbd wallet2: request transactions in slices when scanning for known rings (moneromooo-monero)
25fe67e4 rpc: allow getting pruned blocks from gettransactions (moneromooo-monero)
c77d2bfa Add the possibility to export private view key for fast scan. (cslashm)
100b7bc1 Change mutex lock model to avoid dead lock and ensure locks are always released. (cslashm)
641dfc99 Automatic height setup when creating/restoring hw device. (cslashm)
eaa8bfe7 wallet2: set from_height of GET_OUTPUT_DISTRIBUTION correctly The previous expression (stoffu)
0a619f78 wallet2: enable the mitigation only after the fork height (stoffu)
and get them pruned in find_and_save_rings, since it does not need
the pruned data in the first place.
Also set decode_to_json to false where missing, we don't need this
either.
On client startup the device asks for authorization to export the private view key.
If user agree, the client hold the private view key allowing a fast blockchain scan.
If the user does not agree, the blockchain scan is fully done via the device.
WalletApi: makeMultisig call introduced
WalletApi: finalizeMultisig call introduced
WalletApi: new calls exportMultisigImages and importMultisigImages
WalletApi: method to return multisig wallet creation state
WalletApi: create multisig transaction, sign multisig transaction, commit transaction and get multisig data are added
WalletApi: identation and style fixes
This will avoid careless forkers polluting the shared database
even if they make their own chain. They'll then automatically
start using another subdb, and any key-reusing fork of those
forks will reuse their subdbs.
If a pre-fork output is spent on both Monero and attack chain,
any post-fork output can be deduced to be a fake output, thereby
decreasing the effective ring size.
The segregate-per-fork-outputs option, on by default, allows
selecting only pre-fork outputs in this case, so that the same
ring can be used when spending it on the other side, which does
not decrease the effective ring size.
This is intended to be SET when intending to spend Monero on the
attack fork, and to be UNSET if not intending to spend Monero
on the attack fork (since it leaks the fact that the output being
spent is pre-fork).
If the user is not certain yet whether they will spend pre-fork
outputs on a key reusing fork, the key-reuse-mitigation2 option
should be SET instead.
If you use this option and intend to spend Monero on both forks,
then spend real Monero first.
This maps key images to rings, so that different forks can reuse
the rings by key image. This avoids revealing the real inputs like
would happen if two forks spent the same outputs with different
rings. This database is meant to be shared with all Monero forks
which don't bother making a new chain, putting users' privacy at
risk in the process. It is placed in a shared data directory by
default ($HOME/.shared-ringdb on UNIX like systems). You may
use --shared-ringdb-dir to override this location, and should
then do so for all Monero forks for them to share the database.
When #3303 was merged, a cyclic dependency chain was generated:
libdevice <- libcncrypto <- libringct <- libdevice
This was because libdevice needs access to a set of basic crypto operations
implemented in libringct such as scalarmultBase(), while libringct also needs
access to abstracted crypto operations implemented in libdevice such as
ecdhEncode(). To untangle this cyclic dependency chain, this patch splits libringct
into libringct_basic and libringct, where the basic crypto ops previously in
libringct are moved into libringct_basic. The cyclic dependency is now resolved
thanks to this separation:
libcncrypto <- libringct_basic <- libdevice <- libcryptonote_basic <- libringct
This eliminates the need for crypto_device.cpp and rctOps_device.cpp.
Also, many abstracted interfaces of hw::device such as encrypt_payment_id() and
get_subaddress_secret_key() were previously implemented in libcryptonote_basic
(cryptonote_format_utils.cpp) and were then called from hw::core::device_default,
which is odd because libdevice is supposed to be independent of libcryptonote_basic.
Therefore, those functions were moved to device_default.cpp.
91d97dd4 fuzz_tests: set small subaddress lookahead for speed (moneromooo-monero)
5f85cc7e wallet2: guard against overflowing of subaddress indices (moneromooo-monero)
Fix the way the REAL mode is handle:
Let create_transactions_2 and create_transactions_from construct the vector of transactions.
Then iterate on it and resign.
We just need to add 'outs' list in the TX struct for that.
Fix default secret keys value when DEBUG_HWDEVICE mode is off
The magic value (00...00 for view key and FF..FF for spend key) was not correctly set
when DEBUG_HWDEVICE was off. Both was set to 00...00.
Add sub-address info in ABP map in order to correctly display destination sub-address on device
Fix DEBUG_HWDEVICE mode:
- Fix compilation errors.
- Fix control device init in ledger device.
- Add more log.
Fix sub addr control
Fix debug Info
Previously, a file containing the unencrypted Monero address was
created by default in the wallet's directory. This file might pose
as a privacy risk. The creation of this file is now opt-in and can
be enabled by providing
--create-address-file
- save the new keys file as FOO-watchonly.keys, not FOO.keys-watchonly
- catch any exception (eg, I/O errors) and error out
- print the new keys filename in simplewallet
0e7ad2e2 Wallet API: generalize 'bool testnet' to 'NetworkType nettype' (stoffu)
af773211 Stagenet (stoffu)
cc9a0bee command_line: allow args to depend on more than one args (stoffu)
55f8d917 command_line::get_arg: remove 'required' for dependent args as they're always optional (stoffu)
450306a0 command line: allow has_arg to handle arg_descriptor<bool,false,true> #3318 (stoffu)
9f9e095a Use `genesis_tx` parameter in `generate_genesis_block`. #3261 (Jean Pierre Dudey)
The basic approach it to delegate all sensitive data (master key, secret
ephemeral key, key derivation, ....) and related operations to the device.
As device has low memory, it does not keep itself the values
(except for view/spend keys) but once computed there are encrypted (with AES
are equivalent) and return back to monero-wallet-cli. When they need to be
manipulated by the device, they are decrypted on receive.
Moreover, using the client for storing the value in encrypted form limits
the modification in the client code. Those values are transfered from one
C-structure to another one as previously.
The code modification has been done with the wishes to be open to any
other hardware wallet. To achieve that a C++ class hw::Device has been
introduced. Two initial implementations are provided: the "default", which
remaps all calls to initial Monero code, and the "Ledger", which delegates
all calls to Ledger device.
Since commit b0426d4c refresh height for a newly created wallet
connected to a sync'd daemon was off by a month. Now we only use
the 1 month safety margin if we're unable to talk to a daemon.
a99ef176 wallet-rpc: take subaddress account as arg for get_transfer_by_txid (stoffu)
77125096 wallet-rpc: rename *_INDEX_OUTOFBOUND into *_INDEX_OUT_OF_BOUNDS (stoffu)
f90c76be Return appropriate error code when there's no connection to daemon (Michał Sałaban)
3cb65b3f Return appropriate error code when not enough money for tx (Michał Sałaban)
3160a930 wallet2: remove {set|get}_default_decimal_point and use the same funcs under cryptonote:: instead (stoffu)
7d1088d3 wallet2: make scan_output const and omit keys arg (stoffu)
bc1ee2c2 wallet2: make member functions const when possible (stoffu)
5ae617d5 simplewallet: single out 0 amount destinations as dummy ones (moneromooo-monero)
c1d19f3c wallet2: fix sweep_all sending an atomic unit (moneromooo-monero)
9996d5e9 wallet2: guard against the dameon sending blocks before last checkpoint (moneromooo-monero)
eadaa6aa wallet_rpc_server: fix wallet leak on error exit (moneromooo-monero)
6d8b29ef fix some link errors in debug mode for macos (stoffu)
fdd4c5e5 move memwipe to epee to avoid common<->crypto circular dependencies (moneromooo-monero)
40ab12a7 epee: remove dependency on common (moneromooo-monero)
Wallet caches and keys files are loaded with chacha8 as needed,
but only saved with chacha20. Other data (eg, cold wallet data
files, etc) will be incompatible.
bd5cce07 network_throttle: fix ineffective locking (moneromooo-monero)
e0a61299 network_throttle: remove unused xxx static member (moneromooo-monero)
24f584d9 cryptonote_core: remove unused functions with off by one bugs (moneromooo-monero)
b1634aa3 blockchain: don't leave dangling pointers in this (moneromooo-monero)
8e60b81c cryptonote_core: fix db leak on error (moneromooo-monero)
213e326c abstract_tcp_server2: log init_server errors as fatal (moneromooo-monero)
b51dc566 use const refs in for loops for non tiny types (moneromooo-monero)
f0568ca6 net_parse_helpers: fix regex error checking (moneromooo-monero)
b49ddc76 check accessing an element past the end of a container (moneromooo-monero)
2305bf26 check return value for generate_key_derivation and derive_public_key (moneromooo-monero)
a4240d9f catch const exceptions (moneromooo-monero)
45a1c4c0 add empty container sanity checks when using front() and back() (moneromooo-monero)
56fa6ce1 tests: fix a buffer overread in a unit test (moneromooo-monero)
b4524892 rpc: guard against json parsing a non object (moneromooo-monero)
c2ed8618 easylogging++: avoid buffer underflow (moneromooo-monero)
187a6ab2 epee: trap failure to parse URI from request (moneromooo-monero)
061789b5 checkpoints: trap failure to load JSON checkpoints (moneromooo-monero)
ba2fefb9 checkpoints: pass std::string by const ref, not const value (moneromooo-monero)
38c8f4e0 mlog: terminate a string at last char, just in case (moneromooo-monero)
d753d716 fix a few leaks by throwing objects, not newed pointers to objects (moneromooo-monero)
fe568db8 p2p: use size_t for arbitrary counters instead of uint8_t (moneromooo-monero)
46d6fa35 cryptonote_protocol: sanity check chain hashes from peer (moneromooo-monero)
25584f86 cryptonote_protocol: print peer versions when unexpected (moneromooo-monero)
490a5d41 rpc: do not try to use an invalid txid in relay_tx (moneromooo-monero)
ca18ff64 wallet2: detect spends in txes without a valid public tx key (moneromooo-monero)
6afcd8e3 cn_deserialize: print tx extra fields in partly decoded tx extra (moneromooo-monero)
Scheme by luigi1111:
Multisig for RingCT on Monero
2 of 2
User A (coordinator):
Spendkey b,B
Viewkey a,A (shared)
User B:
Spendkey c,C
Viewkey a,A (shared)
Public Address: C+B, A
Both have their own watch only wallet via C+B, a
A will coordinate spending process (though B could easily as well, coordinator is more needed for more participants)
A and B watch for incoming outputs
B creates "half" key images for discovered output D:
I2_D = (Hs(aR)+c) * Hp(D)
B also creates 1.5 random keypairs (one scalar and 2 pubkeys; one on base G and one on base Hp(D)) for each output, storing the scalar(k) (linked to D),
and sending the pubkeys with I2_D.
A also creates "half" key images:
I1_D = (Hs(aR)+b) * Hp(D)
Then I_D = I1_D + I2_D
Having I_D allows A to check spent status of course, but more importantly allows A to actually build a transaction prefix (and thus transaction).
A builds the transaction until most of the way through MLSAG_Gen, adding the 2 pubkeys (per input) provided with I2_D
to his own generated ones where they are needed (secret row L, R).
At this point, A has a mostly completed transaction (but with an invalid/incomplete signature). A sends over the tx and includes r,
which allows B (with the recipient's address) to verify the destination and amount (by reconstructing the stealth address and decoding ecdhInfo).
B then finishes the signature by computing ss[secret_index][0] = ss[secret_index][0] + k - cc[secret_index]*c (secret indices need to be passed as well).
B can then broadcast the tx, or send it back to A for broadcasting. Once B has completed the signing (and verified the tx to be valid), he can add the full I_D
to his cache, allowing him to verify spent status as well.
NOTE:
A and B *must* present key A and B to each other with a valid signature proving they know a and b respectively.
Otherwise, trickery like the following becomes possible:
A creates viewkey a,A, spendkey b,B, and sends a,A,B to B.
B creates a fake key C = zG - B. B sends C back to A.
The combined spendkey C+B then equals zG, allowing B to spend funds at any time!
The signature fixes this, because B does not know a c corresponding to C (and thus can't produce a signature).
2 of 3
User A (coordinator)
Shared viewkey a,A
"spendkey" j,J
User B
"spendkey" k,K
User C
"spendkey" m,M
A collects K and M from B and C
B collects J and M from A and C
C collects J and K from A and B
A computes N = nG, n = Hs(jK)
A computes O = oG, o = Hs(jM)
B anc C compute P = pG, p = Hs(kM) || Hs(mK)
B and C can also compute N and O respectively if they wish to be able to coordinate
Address: N+O+P, A
The rest follows as above. The coordinator possesses 2 of 3 needed keys; he can get the other
needed part of the signature/key images from either of the other two.
Alternatively, if secure communication exists between parties:
A gives j to B
B gives k to C
C gives m to A
Address: J+K+M, A
3 of 3
Identical to 2 of 2, except the coordinator must collect the key images from both of the others.
The transaction must also be passed an additional hop: A -> B -> C (or A -> C -> B), who can then broadcast it
or send it back to A.
N-1 of N
Generally the same as 2 of 3, except participants need to be arranged in a ring to pass their keys around
(using either the secure or insecure method).
For example (ignoring viewkey so letters line up):
[4 of 5]
User: spendkey
A: a
B: b
C: c
D: d
E: e
a -> B, b -> C, c -> D, d -> E, e -> A
Order of signing does not matter, it just must reach n-1 users. A "remaining keys" list must be passed around with
the transaction so the signers know if they should use 1 or both keys.
Collecting key image parts becomes a little messy, but basically every wallet sends over both of their parts with a tag for each.
Thia way the coordinating wallet can keep track of which images have been added and which wallet they come from. Reasoning:
1. The key images must be added only once (coordinator will get key images for key a from both A and B, he must add only one to get the proper key actual key image)
2. The coordinator must keep track of which helper pubkeys came from which wallet (discussed in 2 of 2 section). The coordinator
must choose only one set to use, then include his choice in the "remaining keys" list so the other wallets know which of their keys to use.
You can generalize it further to N-2 of N or even M of N, but I'm not sure there's legitimate demand to justify the complexity. It might
also be straightforward enough to support with minimal changes from N-1 format.
You basically just give each user additional keys for each additional "-1" you desire. N-2 would be 3 keys per user, N-3 4 keys, etc.
The process is somewhat cumbersome:
To create a N/N multisig wallet:
- each participant creates a normal wallet
- each participant runs "prepare_multisig", and sends the resulting string to every other participant
- each participant runs "make_multisig N A B C D...", with N being the threshold and A B C D... being the strings received from other participants (the threshold must currently equal N)
As txes are received, participants' wallets will need to synchronize so that those new outputs may be spent:
- each participant runs "export_multisig FILENAME", and sends the FILENAME file to every other participant
- each participant runs "import_multisig A B C D...", with A B C D... being the filenames received from other participants
Then, a transaction may be initiated:
- one of the participants runs "transfer ADDRESS AMOUNT"
- this partly signed transaction will be written to the "multisig_monero_tx" file
- the initiator sends this file to another participant
- that other participant runs "sign_multisig multisig_monero_tx"
- the resulting transaction is written to the "multisig_monero_tx" file again
- if the threshold was not reached, the file must be sent to another participant, until enough have signed
- the last participant to sign runs "submit_multisig multisig_monero_tx" to relay the transaction to the Monero network
43f5269f Wallets now do not depend on the daemon rpc lib (moneromooo-monero)
bb89ae8b move connection_basic and network_throttle from src/p2p to epee (moneromooo-monero)
4abf25f3 cryptonote_core does not depend on p2p anymore (moneromooo-monero)
Partially implements #74.
Securely erases keys from memory after they are no longer needed. Might have a
performance impact, which I haven't measured (perf measurements aren't
generally reliable on laptops).
Thanks to @stoffu for the suggestion to specialize the pod_to_hex/hex_to_pod
functions. Using overloads + SFINAE instead generalizes it so other types can
be marked as scrubbed without adding more boilerplate.