Transactions in the txpool are marked when another transaction
is seen double spending one or more of its inputs.
This is then exposed wherever appropriate.
Note that being marked with this "double spend seen" flag does
NOT mean this transaction IS a double spend and will never be
mined: it just means that the network has seen at least another
transaction spending at least one of the same inputs, so care
should be taken to wait for a few confirmations before acting
upon that transaction (ie, mostly of use for merchants wanting
to accept unconfirmed transactions).
d0463312 fix libwallet api test after api change (Jaquee)
a46c1eed Wallet2: Don't throw when subaddress label doesn't exist (Jaquee)
086b7db2 Wallet API: default values for account and subaddr index (Jaquee)
d58700e0 WalletAPI: only allow trusted daemon when importing key images (Jaquee)
8a9bbd26 WalletAPI: copy wallet data when creating a view only wallet (Jaquee)
d27fe32e wallet2: export/import wallet data functions (Jaquee)
225a25f3 import_key_images - allow importing without being connected to daemon (Jaquee)
b7d6ec83 simplewallet: add (out of sync) or (no daemon) markers in the prompt (moneromooo-monero)
fa23a500 wallet2: add a is_synced function (moneromooo-monero)
f1307bbd node_rpc_proxy: add a proxy for target height (moneromooo-monero)
When scanning the txpool without having first updated the
blockchain, the tx would be seen as neither in the txpool
nor the chain, and removed, so it'd only reappear once the
chain is refreshed, and the tx seen in a block.
It sweeps all outputs below the given threshold
This is available via the existing sweep_all RPC, by setting
amount_threshold the desired amount (in atomic units)
With the change from the original transfer method to the new
algorithm, payments to the same destination were merged. It
seemed like a good idea, optimizing space. However, it is a
useful tool for people who want to split large outputs into
several smaller ones (ie, service providers making frequent
payments, and who do not like a large chunk of their balance
being locked for 10 blocks after each payment).
Default to off, which is a change from the previous behavior.
When a single input is enough to satisfy a transfer, the code would
previously try to add a second input, to match the "canonical" makeup
of a transaction with two inputs and two outputs. This would cause
wallets to slowly merge outputs till all the monero ends up in a
single output, which causes trouble when making two transactions
one after the other, since change is locked for 10 blocks, and an
increasing portion of the remaining balance would end up locked on
each transaction.
There are two new settings (min-output-count and min-output-value)
which can control when to stop adding such unneeded second outputs.
The idea is that small "dust" outputs will still get added, but
larger ones will not.
Enable with, eg:
set min-output-count 10
set min-output-value 30
to avoid using an unneeded second output of 30 monero or more, if
there would be less than 10 such outputs left.
This does not invalidate any other reason why such outputs would
be used (ie, when they're really needed to satisfy a transfer, or
when randomly picked in the normal course of selection). This may
be improved in the future.
Asking for a full histogram from a remote node (since it's
untrusted) is pretty slow, and spams the remote node, so
we replace it by only adding a second input if we have rct
ones, which are for all intents and purposes always mixable.
Minimum mixin 4 and enforced ringct is moved from v5 to v6.
v5 is now used for an increased minimum block size (from 60000
to 300000) to cater for larger typical/minimum transaction size.
The fee algorithm is also changed to decrease the base per kB
fee, and add a cheap tier for those transactions which we do
not care if they get delayed (or even included in a block).
c02e1cb9 Updates to epee HTTP client code - http_simple_client now uses std::chrono for timeouts - http_simple_client accepts timeouts per connect / invoke call - shortened names of epee http invoke functions - invoke command functions only take relative path, connection is not automatically performed (Lee Clagett)
- http_simple_client now uses std::chrono for timeouts
- http_simple_client accepts timeouts per connect / invoke call
- shortened names of epee http invoke functions
- invoke command functions only take relative path, connection
is not automatically performed
This avoids indirectly leaking the real output to the daemon,
and is faster.
This will still happen for more complex cases, especially
when cancelling a tx and "re-rolling" it.
This replaces the epee and data_loggers logging systems with
a single one, and also adds filename:line and explicit severity
levels. Categories may be defined, and logging severity set
by category (or set of categories). epee style 0-4 log level
maps to a sensible severity configuration. Log files now also
rotate when reaching 100 MB.
To select which logs to output, use the MONERO_LOGS environment
variable, with a comma separated list of categories (globs are
supported), with their requested severity level after a colon.
If a log matches more than one such setting, the last one in
the configuration string applies. A few examples:
This one is (mostly) silent, only outputting fatal errors:
MONERO_LOGS=*:FATAL
This one is very verbose:
MONERO_LOGS=*:TRACE
This one is totally silent (logwise):
MONERO_LOGS=""
This one outputs all errors and warnings, except for the
"verify" category, which prints just fatal errors (the verify
category is used for logs about incoming transactions and
blocks, and it is expected that some/many will fail to verify,
hence we don't want the spam):
MONERO_LOGS=*:WARNING,verify:FATAL
Log levels are, in decreasing order of priority:
FATAL, ERROR, WARNING, INFO, DEBUG, TRACE
Subcategories may be added using prefixes and globs. This
example will output net.p2p logs at the TRACE level, but all
other net* logs only at INFO:
MONERO_LOGS=*:ERROR,net*:INFO,net.p2p:TRACE
Logs which are intended for the user (which Monero was using
a lot through epee, but really isn't a nice way to go things)
should use the "global" category. There are a few helper macros
for using this category, eg: MGINFO("this shows up by default")
or MGINFO_RED("this is red"), to try to keep a similar look
and feel for now.
Existing epee log macros still exist, and map to the new log
levels, but since they're used as a "user facing" UI element
as much as a logging system, they often don't map well to log
severities (ie, a log level 0 log may be an error, or may be
something we want the user to see, such as an important info).
In those cases, I tried to use the new macros. In other cases,
I left the existing macros in. When modifying logs, it is
probably best to switch to the new macros with explicit levels.
The --log-level options and set_log commands now also accept
category settings, in addition to the epee style log levels.
If we'd make a rct tx with just one input, we try to add
a second one to match the 2/2 ideal. This means more txes
use that template (and are thus using a larger anonymity
set), and it coalesces outputs "for free". We use the
smallest amount outputs in priority for this, so we can
"clean" the wallet at the same time.
A bug in cold signing caused a spurious pubkey to be included
in transactions, so we need to ensure we use the correct one
when sending outputs from one of those.
5783dd8c tests: add unit tests for uri parsing (moneromooo-monero)
82ba2108 wallet: add API and RPC to create/parse monero: URIs (moneromooo-monero)
d9001b43 epee: add functions to convert from URL format (ie, %XX values) (moneromooo-monero)
Daemon RPC version is now composed of a major and minor number,
so that incompatible changes bump the major version, while
compatible changes can still bump the minor version without
causing clients to unnecessarily complain.
6d76072 simplewallet: remove double confirmation when submitting signed tx (moneromooo-monero)
92dea04 wallet2: fix wrong change being recorded for cold signed txes (moneromooo-monero)
When passing around unsigned and signed transactions, outputs
and key images are passed along (outputs are passed along unsigned
transactions from the hot wallet to the cold wallet, key images
are passed along with signed transations from the cold wallet
to the hot wallet), to allow more user friendly syncing between
hot and cold wallets.
View wallets do not have the spend secret key, and are thus
unable to derive key images for incoming outputs. Moreover,
a previous patch set key images to zero as a means to mark
an output as having an unknown key image, so they could be
filled in when importing key images at a later time. That
later patch caused spurious collisions. We now use public
keys to detect duplicate outputs. Public keys obtained from
the blockchain are checked to be identical to the ones
derived locally, so can't be spoofed.
m_amount_out was sometimes getting initialized with the sum of
an transaction's outputs, and sometimes with the sum of outputs
that were not change. This caused confusion and bugs. We now
always set it to the sum of outputs. This reverts an earlier
fix for bad amounts as this used the other semantics. The wallet
data should be converted automatically in a percentage of cases
that I'm hesitant to estimate. In any case, restoring from seed
or keys or rebuilding the cache will get it right.
Compute derivation only once per tx, instead of once per output. Approx 33% faster while using 75% as much CPU on my machine. Note old functions in cryptonote_core (lookup_acc_outs and is_out_to_acc) are still used by tests.
The intended use is to export outputs from a hot wallet, which
can scan incoming transfers from the network, and import them
in the cold wallet, which can't. The cold wallet can then compute
key images for those outputs, which can then be exported with
export_key_images, etc.
Re-creating the transaction on the cold wallet was not splitting
the change, causing the transaction to be rejected by the network.
This worked on testnet since amounts do not have to be split.
Also add selected_transfers, which can now be saved since they're
size_t rather than iterators. This allows the view wallet to
properly set the sent outputs as spent and update balance.
Bump transfer file version numbers to match.
This was still using the old transaction creation algorithm,
coupled with a deterministic output selection scheme, which
made it ill suited to the job, since it'd loop indefinitely
in case the fee increased between the test tx and adding the
fee.
bba6af9 wallet: cold wallet transaction signing (moneromooo-monero)
9872dcb wallet: fix log confusion between bytes and kilobytes (moneromooo-monero)
d9b0bf9 cryptonote_core: make extra field removal more generic (moneromooo-monero)
98f19d4 serialization: add support for serializing std::pair and std::list (moneromooo-monero)
This change adds the ability to create a new unsigned transaction
from a watch only wallet, and save it to a file. This file can
then be moved to another computer/VM where a cold wallet may load
it, sign it, and save it. That cold wallet does not need to have
a blockchain nor daemon. The signed transaction file can then be
moved back to the watch only wallet, which can load it and send
it to the daemon.
Two new simplewallet commands to use it:
sign_transfer (on the cold wallet)
submit_transfer (on the watch only wallet)
The transfer command used on a watch only wallet now writes an
unsigned transaction set in a file called 'unsigned_monero_tx'
instead of submitting the tx to the daemon as a normal wallet does.
The signed tx file is called 'signed_monero_tx'.
We keep 1, 2, 3 multipliers till the fee decrase from 0.01/kB
to 0.002/kB, where we start using 1, 20, 166 multipliers.
This ensures the higher multiplier will compensate for the
block reward penalty when pushing past 100% of the past median.
The fee-multiplier wallet setting is now rename to priority,
since it keeps its [0..3] range, but maps to different multiplier
values.
When RingCT is enabled, outputs from coinbase transactions
are created as a single output, and stored as RingCT output,
with a fake mask. Their amount is not hidden on the blockchain
itself, but they are then able to be used as fake inputs in
a RingCT ring. Since the output amounts are hidden, their
"dustiness" is not an obstacle anymore to mixing, and this
makes the coinbase transactions a lot smaller, as well as
helping the TXO set to grow more slowly.
Also add a new "Null" type of rct signature, which decreases
the size required when no signatures are to be stored, as
in a coinbase tx.
This allows the key to be not the same for two outputs sent to
the same address (eg, if you pay yourself, and also get change
back). Also remove the key amounts lists and return parameters
since we don't actually generate random ones, so we don't need
to save them as we can recalculate them when needed if we have
the correct keys.
This plugs a privacy leak, where the wallet tells the daemon
which transactions contain outputs for the wallet by asking
for additional information for that particular transaction.
As a nice bonus, this actually makes refresh slightly faster.
Before the normal selection, we attempt to find either one or two
suitable outputs to use as inputs to the rct tx. The intent is that
most rct txes will have one or two inputs, and we want all to look
the same if possible.
When two outputs are needed, we try to find a pair which are not
related (ie, by being from the same or similar block height).
The "transfer" simplewallet command is renamed to "transfer_original".
"transfer_new" is renamed "transfer", "transfer_rct" is removed,
and the new "transfer" now selects rct or non rct transactions
based on the current block height.
If the blockchain gets reorganized, all outputs spent in the part
of the blockchain that's blown away need to be reset to unspent
(they may end up spent again on the blocks that replace the blocks
that are removed, however).
This plugs a privacy leak from the wallet to the daemon,
as the daemon could previously see what input is included
as a transaction input, which the daemon hadn't previously
supplied. Now, the wallet requests a particular set of
outputs, including the real one.
This can result in transactions that can't be accepted if
the wallet happens to select too many outputs with non standard
unlock times. The daemon could know this and select another
output, but the wallet is blind to it. It's currently very
unlikely since I don't think anything uses non default
unlock times. The wallet requests more outputs than necessary
so it can use spares if any of the returns outputs are still
locked. If there are not enough spares to reach the desired
mixin, the transaction will fail.
This constrains the number of instances of any amount
to the unlocked ones (as defined by the default unlock time
setting: outputs with non default unlock time are not
considered, so may be counted as unlocked even if they are
not actually unlocked).
They are used to export a signed set of key images from a wallet
with a private spend key, so an auditor with the matching view key
may see which of those are spent, and which are not.
Signing is done using the spend key, since the view key may
be shared. This could be extended later, to let the user choose
which key (even a per tx key).
simplewallet's sign/verify API uses a file. The RPC uses a
string (simplewallet can't easily do strings since commands
receive a tokenized set of arguments).
Fee can now be multiplied by 2 or 3, if users want to give
priority to their transactions. There are only three levels
to avoid too much fingerprinting. Default is 1 (minimum fee).
The default multiplier can be set by "set fee-multiplier X".
This sends all outputs in a wallet to a given address, alleviating
the difficulty people have had trying to send all monero but
being left with some small amount left.
modified: src/wallet/wallet2.cpp
modified: src/wallet/wallet2.h
Update to fix unconfirmed balance and give a slightly more verbose and informative confirmation message for transfers
When m_refresh_from_block_height has been set, only hashes will be
retrieved up to that height, instead of full blocks. The same will
be done for "refresh <height>" when the specified height is beyond
the current local blockchain.
With the change in mixin rules for v2, the "annoying" outputs are
slightly changed. There is high correlation between dust and
unmixable, but no equivalence.
It takes a filename containing JSON data to generate a wallet.
The following fields are valid:
version: integer, should be 1
filename: string, path/filename for the newly created wallet
scan_from_height: 64 bit unsigned integer, optional
password: string, optional
viewkey: string, hex representation
spendkey: string, hex representation
seed: string, optional, list of words separated by spaces
Either seed or private keys should be given. If using private
keys, the spend key may be omitted (the wallet will not be
able to spend, but will see incoming transactions).
If scan_from_height is given, blocks below this height will not
be checked for transactions as an optimization.