This comment suggests this check is unnecessary, when it is completely necessary as miner TXs can have multiple outputs *which is a statement directly, and incorrectly, contradicted by this comment*. While I don't ever see someone removing this code and getting their edits merged into Monero, someone inexperienced who thinks they're cleaning old code may break their own work, and then there's really just zero benefit to keeping this around.
avoids mining txes after a fork that are invalid by this fork's
rules, but were valid by the previous fork rules at the time
they were verified and added to the txpool.
Adds the following:
- "get_miner_data" to RPC API
- "json-miner-data" to ZeroMQ subscriber contexts
Both provide the necessary data to create a custom block template. They are used by p2pool.
Data provided:
- major fork version
- current height
- previous block id
- RandomX seed hash
- network difficulty
- median block weight
- coins mined by the network so far
- mineable mempool transactions
On Mac, size_t is a distinct type from uint64_t, and some
types (in wallet cache as well as cold/hot wallet transfer
data) use pairs/containers with size_t as fields. Mac would
save those as full size, while other platforms would save
them as varints. Might apply to other platforms where the
types are distinct.
There's a nasty hack for backward compatibility, which can
go after a couple forks.
There are quite a few variables in the code that are no longer
(or perhaps never were) in use. These were discovered by enabling
compiler warnings for unused variables and cleaning them up.
In most cases where the unused variables were the result
of a function call the call was left but the variable
assignment removed, unless it was obvious that it was
a simple getter with no side effects.
A 20% fluff probability increases the precision of a spy connected to
every node by 10% on average, compared to a network using 0% fluff
probability. The current value (10% fluff) should increase precision by
~5% compared to baseline.
This decreases the expected stem length from 10 to 5. The embargo
timeout was therefore lowered to 39s; the fifth node in a stem is
expected to have a 90% chance of being the first to timeout, which is
the same probability we currently have with an expected stem length of
10 nodes.