If a pre-fork output is spent on both Monero and attack chain,
any post-fork output can be deduced to be a fake output, thereby
decreasing the effective ring size.
The segregate-per-fork-outputs option, on by default, allows
selecting only pre-fork outputs in this case, so that the same
ring can be used when spending it on the other side, which does
not decrease the effective ring size.
This is intended to be SET when intending to spend Monero on the
attack fork, and to be UNSET if not intending to spend Monero
on the attack fork (since it leaks the fact that the output being
spent is pre-fork).
If the user is not certain yet whether they will spend pre-fork
outputs on a key reusing fork, the key-reuse-mitigation2 option
should be SET instead.
If you use this option and intend to spend Monero on both forks,
then spend real Monero first.
This maps key images to rings, so that different forks can reuse
the rings by key image. This avoids revealing the real inputs like
would happen if two forks spent the same outputs with different
rings. This database is meant to be shared with all Monero forks
which don't bother making a new chain, putting users' privacy at
risk in the process. It is placed in a shared data directory by
default ($HOME/.shared-ringdb on UNIX like systems). You may
use --shared-ringdb-dir to override this location, and should
then do so for all Monero forks for them to share the database.
hash: add prehashed version cn_slow_hash_prehashed
slow-hash: let cn_slow_hash take 4th parameter for deciding prehashed or not
slow-hash: add support for prehashed version for the other 3 platforms
When #3303 was merged, a cyclic dependency chain was generated:
libdevice <- libcncrypto <- libringct <- libdevice
This was because libdevice needs access to a set of basic crypto operations
implemented in libringct such as scalarmultBase(), while libringct also needs
access to abstracted crypto operations implemented in libdevice such as
ecdhEncode(). To untangle this cyclic dependency chain, this patch splits libringct
into libringct_basic and libringct, where the basic crypto ops previously in
libringct are moved into libringct_basic. The cyclic dependency is now resolved
thanks to this separation:
libcncrypto <- libringct_basic <- libdevice <- libcryptonote_basic <- libringct
This eliminates the need for crypto_device.cpp and rctOps_device.cpp.
Also, many abstracted interfaces of hw::device such as encrypt_payment_id() and
get_subaddress_secret_key() were previously implemented in libcryptonote_basic
(cryptonote_format_utils.cpp) and were then called from hw::core::device_default,
which is odd because libdevice is supposed to be independent of libcryptonote_basic.
Therefore, those functions were moved to device_default.cpp.
91d97dd4 fuzz_tests: set small subaddress lookahead for speed (moneromooo-monero)
5f85cc7e wallet2: guard against overflowing of subaddress indices (moneromooo-monero)
Fix the way the REAL mode is handle:
Let create_transactions_2 and create_transactions_from construct the vector of transactions.
Then iterate on it and resign.
We just need to add 'outs' list in the TX struct for that.
Fix default secret keys value when DEBUG_HWDEVICE mode is off
The magic value (00...00 for view key and FF..FF for spend key) was not correctly set
when DEBUG_HWDEVICE was off. Both was set to 00...00.
Add sub-address info in ABP map in order to correctly display destination sub-address on device
Fix DEBUG_HWDEVICE mode:
- Fix compilation errors.
- Fix control device init in ledger device.
- Add more log.
Fix sub addr control
Fix debug Info
Previously, a file containing the unencrypted Monero address was
created by default in the wallet's directory. This file might pose
as a privacy risk. The creation of this file is now opt-in and can
be enabled by providing
--create-address-file
- save the new keys file as FOO-watchonly.keys, not FOO.keys-watchonly
- catch any exception (eg, I/O errors) and error out
- print the new keys filename in simplewallet
0e7ad2e2 Wallet API: generalize 'bool testnet' to 'NetworkType nettype' (stoffu)
af773211 Stagenet (stoffu)
cc9a0bee command_line: allow args to depend on more than one args (stoffu)
55f8d917 command_line::get_arg: remove 'required' for dependent args as they're always optional (stoffu)
450306a0 command line: allow has_arg to handle arg_descriptor<bool,false,true> #3318 (stoffu)
9f9e095a Use `genesis_tx` parameter in `generate_genesis_block`. #3261 (Jean Pierre Dudey)
* src/cryptnote_config.h: The constant `config::testnet::GENESIS_TX` was
changed to be the same as `config::GENESIS_TX` (the mainnet's transaction)
because the mainnet's transaction was being used for both networks.
* src/cryptonote_core/cryptonote_tx_utils.cpp: The `generate_genesis_block` function
was ignoring the `genesis_tx` parameter, and instead it was using the `config::GENESIS_TX`
constant. That's why the testnet genesis transaction was changed. Also five lines of unused
code were removed.
Signed-off-by: Jean Pierre Dudey <jeandudey@hotmail.com>
The basic approach it to delegate all sensitive data (master key, secret
ephemeral key, key derivation, ....) and related operations to the device.
As device has low memory, it does not keep itself the values
(except for view/spend keys) but once computed there are encrypted (with AES
are equivalent) and return back to monero-wallet-cli. When they need to be
manipulated by the device, they are decrypted on receive.
Moreover, using the client for storing the value in encrypted form limits
the modification in the client code. Those values are transfered from one
C-structure to another one as previously.
The code modification has been done with the wishes to be open to any
other hardware wallet. To achieve that a C++ class hw::Device has been
introduced. Two initial implementations are provided: the "default", which
remaps all calls to initial Monero code, and the "Ledger", which delegates
all calls to Ledger device.