mirror of
https://git.wownero.com/wownero/wownero.git
synced 2025-01-23 15:48:35 +00:00
Cryptonight variant 4 aka cn/wow
This commit is contained in:
parent
47a74343da
commit
ffee430b36
@ -40,9 +40,6 @@
|
||||
#include "oaes_lib.h"
|
||||
#include "variant2_int_sqrt.h"
|
||||
#include "variant4_random_math.h"
|
||||
#include "CryptonightR_JIT.h"
|
||||
|
||||
#include <errno.h>
|
||||
|
||||
#define MEMORY (1 << 21) // 2MB scratchpad
|
||||
#define ITER (1 << 20)
|
||||
@ -54,41 +51,6 @@
|
||||
extern void aesb_single_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
|
||||
extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
|
||||
|
||||
static void local_abort(const char *msg)
|
||||
{
|
||||
fprintf(stderr, "%s\n", msg);
|
||||
#ifdef NDEBUG
|
||||
_exit(1);
|
||||
#else
|
||||
abort();
|
||||
#endif
|
||||
}
|
||||
|
||||
volatile int use_v4_jit_flag = -1;
|
||||
|
||||
static inline int use_v4_jit(void)
|
||||
{
|
||||
#if defined(__x86_64__)
|
||||
|
||||
if (use_v4_jit_flag != -1)
|
||||
return use_v4_jit_flag;
|
||||
|
||||
const char *env = getenv("MONERO_USE_CNV4_JIT");
|
||||
if (!env) {
|
||||
use_v4_jit_flag = 1;
|
||||
}
|
||||
else if (!strcmp(env, "0") || !strcmp(env, "no")) {
|
||||
use_v4_jit_flag = 0;
|
||||
}
|
||||
else {
|
||||
use_v4_jit_flag = 1;
|
||||
}
|
||||
return use_v4_jit_flag;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
#define VARIANT1_1(p) \
|
||||
do if (variant == 1) \
|
||||
{ \
|
||||
@ -155,74 +117,48 @@ static inline int use_v4_jit(void)
|
||||
#define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \
|
||||
do if (variant >= 2) \
|
||||
{ \
|
||||
__m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \
|
||||
const __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \
|
||||
const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \
|
||||
const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \
|
||||
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \
|
||||
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \
|
||||
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \
|
||||
if (variant >= 4) \
|
||||
{ \
|
||||
chunk1 = _mm_xor_si128(chunk1, chunk2); \
|
||||
_c = _mm_xor_si128(_c, chunk3); \
|
||||
_c = _mm_xor_si128(_c, chunk1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \
|
||||
do if (variant >= 2) \
|
||||
{ \
|
||||
uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \
|
||||
const uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \
|
||||
const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \
|
||||
const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \
|
||||
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \
|
||||
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \
|
||||
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \
|
||||
if (variant >= 4) \
|
||||
{ \
|
||||
chunk1 = veorq_u64(chunk1, chunk2); \
|
||||
_c = vreinterpretq_u8_u64(veorq_u64(vreinterpretq_u64_u8(_c), chunk3)); \
|
||||
_c = vreinterpretq_u8_u64(veorq_u64(vreinterpretq_u64_u8(_c), chunk1)); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define VARIANT2_PORTABLE_SHUFFLE_ADD(out, a_, base_ptr, offset) \
|
||||
#define VARIANT2_PORTABLE_SHUFFLE_ADD(base_ptr, offset) \
|
||||
do if (variant >= 2) \
|
||||
{ \
|
||||
uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \
|
||||
uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \
|
||||
uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \
|
||||
\
|
||||
uint64_t chunk1_old[2] = { SWAP64LE(chunk1[0]), SWAP64LE(chunk1[1]) }; \
|
||||
const uint64_t chunk2_old[2] = { SWAP64LE(chunk2[0]), SWAP64LE(chunk2[1]) }; \
|
||||
const uint64_t chunk3_old[2] = { SWAP64LE(chunk3[0]), SWAP64LE(chunk3[1]) }; \
|
||||
const uint64_t chunk1_old[2] = { chunk1[0], chunk1[1] }; \
|
||||
\
|
||||
uint64_t b1[2]; \
|
||||
memcpy_swap64le(b1, b + 16, 2); \
|
||||
chunk1[0] = SWAP64LE(chunk3_old[0] + b1[0]); \
|
||||
chunk1[1] = SWAP64LE(chunk3_old[1] + b1[1]); \
|
||||
chunk1[0] = SWAP64LE(SWAP64LE(chunk3[0]) + b1[0]); \
|
||||
chunk1[1] = SWAP64LE(SWAP64LE(chunk3[1]) + b1[1]); \
|
||||
\
|
||||
uint64_t a0[2]; \
|
||||
memcpy_swap64le(a0, a_, 2); \
|
||||
chunk3[0] = SWAP64LE(chunk2_old[0] + a0[0]); \
|
||||
chunk3[1] = SWAP64LE(chunk2_old[1] + a0[1]); \
|
||||
memcpy_swap64le(a0, a, 2); \
|
||||
chunk3[0] = SWAP64LE(SWAP64LE(chunk2[0]) + a0[0]); \
|
||||
chunk3[1] = SWAP64LE(SWAP64LE(chunk2[1]) + a0[1]); \
|
||||
\
|
||||
uint64_t b0[2]; \
|
||||
memcpy_swap64le(b0, b, 2); \
|
||||
chunk2[0] = SWAP64LE(chunk1_old[0] + b0[0]); \
|
||||
chunk2[1] = SWAP64LE(chunk1_old[1] + b0[1]); \
|
||||
if (variant >= 4) \
|
||||
{ \
|
||||
uint64_t out_copy[2]; \
|
||||
memcpy_swap64le(out_copy, out, 2); \
|
||||
chunk1_old[0] ^= chunk2_old[0]; \
|
||||
chunk1_old[1] ^= chunk2_old[1]; \
|
||||
out_copy[0] ^= chunk3_old[0]; \
|
||||
out_copy[1] ^= chunk3_old[1]; \
|
||||
out_copy[0] ^= chunk1_old[0]; \
|
||||
out_copy[1] ^= chunk1_old[1]; \
|
||||
memcpy_swap64le(out, out_copy, 2); \
|
||||
} \
|
||||
chunk2[0] = SWAP64LE(SWAP64LE(chunk1_old[0]) + b0[0]); \
|
||||
chunk2[1] = SWAP64LE(SWAP64LE(chunk1_old[1]) + b0[1]); \
|
||||
} while (0)
|
||||
|
||||
#define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \
|
||||
@ -265,18 +201,18 @@ static inline int use_v4_jit(void)
|
||||
#endif
|
||||
|
||||
#define VARIANT2_2_PORTABLE() \
|
||||
if (variant == 2 || variant == 3) { \
|
||||
if (variant >= 2) { \
|
||||
xor_blocks(long_state + (j ^ 0x10), d); \
|
||||
xor_blocks(d, long_state + (j ^ 0x20)); \
|
||||
}
|
||||
|
||||
#define VARIANT2_2() \
|
||||
do if (variant == 2 || variant == 3) \
|
||||
do if (variant >= 2) \
|
||||
{ \
|
||||
*U64(local_hp_state + (j ^ 0x10)) ^= SWAP64LE(hi); \
|
||||
*(U64(local_hp_state + (j ^ 0x10)) + 1) ^= SWAP64LE(lo); \
|
||||
hi ^= SWAP64LE(*U64(local_hp_state + (j ^ 0x20))); \
|
||||
lo ^= SWAP64LE(*(U64(local_hp_state + (j ^ 0x20)) + 1)); \
|
||||
*U64(hp_state + (j ^ 0x10)) ^= SWAP64LE(hi); \
|
||||
*(U64(hp_state + (j ^ 0x10)) + 1) ^= SWAP64LE(lo); \
|
||||
hi ^= SWAP64LE(*U64(hp_state + (j ^ 0x20))); \
|
||||
lo ^= SWAP64LE(*(U64(hp_state + (j ^ 0x20)) + 1)); \
|
||||
} while (0)
|
||||
|
||||
#define V4_REG_LOAD(dst, src) \
|
||||
@ -289,56 +225,34 @@ static inline int use_v4_jit(void)
|
||||
} while (0)
|
||||
|
||||
#define VARIANT4_RANDOM_MATH_INIT() \
|
||||
v4_reg r[9]; \
|
||||
struct V4_Instruction code[NUM_INSTRUCTIONS_MAX + 1]; \
|
||||
int jit = use_v4_jit(); \
|
||||
v4_reg r[8]; \
|
||||
struct V4_Instruction code[TOTAL_LATENCY * ALU_COUNT + 1]; \
|
||||
do if (variant >= 4) \
|
||||
{ \
|
||||
for (int i = 0; i < 4; ++i) \
|
||||
V4_REG_LOAD(r + i, (uint8_t*)(state.hs.w + 12) + sizeof(v4_reg) * i); \
|
||||
v4_random_math_init(code, height); \
|
||||
if (jit) \
|
||||
{ \
|
||||
int ret = v4_generate_JIT_code(code, hp_jitfunc, 4096); \
|
||||
if (ret < 0) \
|
||||
local_abort("Error generating CryptonightR code"); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define VARIANT4_RANDOM_MATH(a, b, r, _b, _b1) \
|
||||
do if (variant >= 4) \
|
||||
{ \
|
||||
uint64_t t[2]; \
|
||||
memcpy(t, b, sizeof(uint64_t)); \
|
||||
uint64_t t; \
|
||||
memcpy(&t, b, sizeof(uint64_t)); \
|
||||
\
|
||||
if (sizeof(v4_reg) == sizeof(uint32_t)) \
|
||||
t[0] ^= SWAP64LE((r[0] + r[1]) | ((uint64_t)(r[2] + r[3]) << 32)); \
|
||||
t ^= SWAP64LE((r[0] + r[1]) | ((uint64_t)(r[2] + r[3]) << 32)); \
|
||||
else \
|
||||
t[0] ^= SWAP64LE((r[0] + r[1]) ^ (r[2] + r[3])); \
|
||||
t ^= SWAP64LE((r[0] + r[1]) ^ (r[2] + r[3])); \
|
||||
\
|
||||
memcpy(b, t, sizeof(uint64_t)); \
|
||||
memcpy(b, &t, sizeof(uint64_t)); \
|
||||
\
|
||||
V4_REG_LOAD(r + 4, a); \
|
||||
V4_REG_LOAD(r + 5, (uint64_t*)(a) + 1); \
|
||||
V4_REG_LOAD(r + 6, _b); \
|
||||
V4_REG_LOAD(r + 7, _b1); \
|
||||
V4_REG_LOAD(r + 8, (uint64_t*)(_b1) + 1); \
|
||||
\
|
||||
if (jit) \
|
||||
(*hp_jitfunc)(r); \
|
||||
else \
|
||||
v4_random_math(code, r); \
|
||||
\
|
||||
memcpy(t, a, sizeof(uint64_t) * 2); \
|
||||
\
|
||||
if (sizeof(v4_reg) == sizeof(uint32_t)) { \
|
||||
t[0] ^= SWAP64LE(r[2] | ((uint64_t)(r[3]) << 32)); \
|
||||
t[1] ^= SWAP64LE(r[0] | ((uint64_t)(r[1]) << 32)); \
|
||||
} else { \
|
||||
t[0] ^= SWAP64LE(r[2] ^ r[3]); \
|
||||
t[1] ^= SWAP64LE(r[0] ^ r[1]); \
|
||||
} \
|
||||
memcpy(a, t, sizeof(uint64_t) * 2); \
|
||||
} while (0)
|
||||
|
||||
|
||||
@ -404,7 +318,7 @@ static inline int use_v4_jit(void)
|
||||
|
||||
#define pre_aes() \
|
||||
j = state_index(a); \
|
||||
_c = _mm_load_si128(R128(&local_hp_state[j])); \
|
||||
_c = _mm_load_si128(R128(&hp_state[j])); \
|
||||
_a = _mm_load_si128(R128(a)); \
|
||||
|
||||
/*
|
||||
@ -417,20 +331,20 @@ static inline int use_v4_jit(void)
|
||||
* This code is based upon an optimized implementation by dga.
|
||||
*/
|
||||
#define post_aes() \
|
||||
VARIANT2_SHUFFLE_ADD_SSE2(local_hp_state, j); \
|
||||
VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
|
||||
_mm_store_si128(R128(c), _c); \
|
||||
_mm_store_si128(R128(&local_hp_state[j]), _mm_xor_si128(_b, _c)); \
|
||||
VARIANT1_1(&local_hp_state[j]); \
|
||||
_mm_store_si128(R128(&hp_state[j]), _mm_xor_si128(_b, _c)); \
|
||||
VARIANT1_1(&hp_state[j]); \
|
||||
j = state_index(c); \
|
||||
p = U64(&local_hp_state[j]); \
|
||||
p = U64(&hp_state[j]); \
|
||||
b[0] = p[0]; b[1] = p[1]; \
|
||||
VARIANT2_INTEGER_MATH_SSE2(b, c); \
|
||||
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
|
||||
__mul(); \
|
||||
VARIANT2_2(); \
|
||||
VARIANT2_SHUFFLE_ADD_SSE2(local_hp_state, j); \
|
||||
VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
|
||||
a[0] += hi; a[1] += lo; \
|
||||
p = U64(&local_hp_state[j]); \
|
||||
p = U64(&hp_state[j]); \
|
||||
p[0] = a[0]; p[1] = a[1]; \
|
||||
a[0] ^= b[0]; a[1] ^= b[1]; \
|
||||
VARIANT1_2(p + 1); \
|
||||
@ -457,9 +371,6 @@ union cn_slow_hash_state
|
||||
|
||||
THREADV uint8_t *hp_state = NULL;
|
||||
THREADV int hp_allocated = 0;
|
||||
THREADV v4_random_math_JIT_func hp_jitfunc = NULL;
|
||||
THREADV uint8_t *hp_jitfunc_memory = NULL;
|
||||
THREADV int hp_jitfunc_allocated = 0;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#define cpuid(info,x) __cpuidex(info,x,0)
|
||||
@ -755,10 +666,10 @@ void cn_slow_hash_allocate_state(void)
|
||||
#if defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || \
|
||||
defined(__DragonFly__) || defined(__NetBSD__)
|
||||
hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
|
||||
MAP_PRIVATE | MAP_ANON, -1, 0);
|
||||
MAP_PRIVATE | MAP_ANON, 0, 0);
|
||||
#else
|
||||
hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
|
||||
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
|
||||
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, 0, 0);
|
||||
#endif
|
||||
if(hp_state == MAP_FAILED)
|
||||
hp_state = NULL;
|
||||
@ -769,35 +680,6 @@ void cn_slow_hash_allocate_state(void)
|
||||
hp_allocated = 0;
|
||||
hp_state = (uint8_t *) malloc(MEMORY);
|
||||
}
|
||||
|
||||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
hp_jitfunc_memory = (uint8_t *) VirtualAlloc(hp_jitfunc_memory, 4096 + 4095,
|
||||
MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
|
||||
#else
|
||||
#if defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || \
|
||||
defined(__DragonFly__) || defined(__NetBSD__)
|
||||
#ifdef __NetBSD__
|
||||
#define RESERVED_FLAGS PROT_MPROTECT(PROT_EXEC)
|
||||
#else
|
||||
#define RESERVED_FLAGS 0
|
||||
#endif
|
||||
hp_jitfunc_memory = mmap(0, 4096 + 4096, PROT_READ | PROT_WRITE | RESERVED_FLAGS,
|
||||
MAP_PRIVATE | MAP_ANON, -1, 0);
|
||||
#else
|
||||
hp_jitfunc_memory = mmap(0, 4096 + 4096, PROT_READ | PROT_WRITE | PROT_EXEC,
|
||||
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
||||
#endif
|
||||
if(hp_jitfunc_memory == MAP_FAILED)
|
||||
hp_jitfunc_memory = NULL;
|
||||
#endif
|
||||
hp_jitfunc_allocated = 1;
|
||||
if (hp_jitfunc_memory == NULL)
|
||||
{
|
||||
hp_jitfunc_allocated = 0;
|
||||
hp_jitfunc_memory = malloc(4096 + 4095);
|
||||
}
|
||||
hp_jitfunc = (v4_random_math_JIT_func)((size_t)(hp_jitfunc_memory + 4095) & ~4095);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -820,22 +702,8 @@ void cn_slow_hash_free_state(void)
|
||||
#endif
|
||||
}
|
||||
|
||||
if(!hp_jitfunc_allocated)
|
||||
free(hp_jitfunc_memory);
|
||||
else
|
||||
{
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
VirtualFree(hp_jitfunc_memory, 0, MEM_RELEASE);
|
||||
#else
|
||||
munmap(hp_jitfunc_memory, 4096 + 4095);
|
||||
#endif
|
||||
}
|
||||
|
||||
hp_state = NULL;
|
||||
hp_allocated = 0;
|
||||
hp_jitfunc = NULL;
|
||||
hp_jitfunc_memory = NULL;
|
||||
hp_jitfunc_allocated = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -919,7 +787,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||
{
|
||||
aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
|
||||
memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||
memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -931,7 +799,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
for(j = 0; j < INIT_SIZE_BLK; j++)
|
||||
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
|
||||
|
||||
memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||
memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||
}
|
||||
}
|
||||
|
||||
@ -979,7 +847,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||
{
|
||||
// add the xor to the pseudo round
|
||||
aes_pseudo_round_xor(text, text, expandedKey, &local_hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
|
||||
aes_pseudo_round_xor(text, text, expandedKey, &hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -989,7 +857,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
{
|
||||
for(j = 0; j < INIT_SIZE_BLK; j++)
|
||||
{
|
||||
xor_blocks(&text[j * AES_BLOCK_SIZE], &local_hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
|
||||
xor_blocks(&text[j * AES_BLOCK_SIZE], &hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
|
||||
}
|
||||
}
|
||||
@ -1033,8 +901,6 @@ void cn_slow_hash_free_state(void)
|
||||
|
||||
#define U64(x) ((uint64_t *) (x))
|
||||
|
||||
#define hp_jitfunc ((v4_random_math_JIT_func)NULL)
|
||||
|
||||
STATIC INLINE void xor64(uint64_t *a, const uint64_t b)
|
||||
{
|
||||
*a ^= b;
|
||||
@ -1069,24 +935,24 @@ union cn_slow_hash_state
|
||||
|
||||
#define pre_aes() \
|
||||
j = state_index(a); \
|
||||
_c = vld1q_u8(&local_hp_state[j]); \
|
||||
_c = vld1q_u8(&hp_state[j]); \
|
||||
_a = vld1q_u8((const uint8_t *)a); \
|
||||
|
||||
#define post_aes() \
|
||||
VARIANT2_SHUFFLE_ADD_NEON(local_hp_state, j); \
|
||||
VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
|
||||
vst1q_u8((uint8_t *)c, _c); \
|
||||
vst1q_u8(&local_hp_state[j], veorq_u8(_b, _c)); \
|
||||
VARIANT1_1(&local_hp_state[j]); \
|
||||
vst1q_u8(&hp_state[j], veorq_u8(_b, _c)); \
|
||||
VARIANT1_1(&hp_state[j]); \
|
||||
j = state_index(c); \
|
||||
p = U64(&local_hp_state[j]); \
|
||||
p = U64(&hp_state[j]); \
|
||||
b[0] = p[0]; b[1] = p[1]; \
|
||||
VARIANT2_PORTABLE_INTEGER_MATH(b, c); \
|
||||
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
|
||||
__mul(); \
|
||||
VARIANT2_2(); \
|
||||
VARIANT2_SHUFFLE_ADD_NEON(local_hp_state, j); \
|
||||
VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
|
||||
a[0] += hi; a[1] += lo; \
|
||||
p = U64(&local_hp_state[j]); \
|
||||
p = U64(&hp_state[j]); \
|
||||
p[0] = a[0]; p[1] = a[1]; \
|
||||
a[0] ^= b[0]; a[1] ^= b[1]; \
|
||||
VARIANT1_2(p + 1); \
|
||||
@ -1249,9 +1115,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
RDATA_ALIGN16 uint8_t expandedKey[240];
|
||||
|
||||
#ifndef FORCE_USE_HEAP
|
||||
RDATA_ALIGN16 uint8_t local_hp_state[MEMORY];
|
||||
RDATA_ALIGN16 uint8_t hp_state[MEMORY];
|
||||
#else
|
||||
uint8_t *local_hp_state = (uint8_t *)aligned_malloc(MEMORY,16);
|
||||
uint8_t *hp_state = (uint8_t *)aligned_malloc(MEMORY,16);
|
||||
#endif
|
||||
|
||||
uint8_t text[INIT_SIZE_BYTE];
|
||||
@ -1291,7 +1157,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||
{
|
||||
aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
|
||||
memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||
memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||
}
|
||||
|
||||
U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
|
||||
@ -1326,7 +1192,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||
{
|
||||
// add the xor to the pseudo round
|
||||
aes_pseudo_round_xor(text, text, expandedKey, &local_hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
|
||||
aes_pseudo_round_xor(text, text, expandedKey, &hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
|
||||
}
|
||||
|
||||
/* CryptoNight Step 5: Apply Keccak to the state again, and then
|
||||
@ -1341,7 +1207,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
|
||||
|
||||
#ifdef FORCE_USE_HEAP
|
||||
aligned_free(local_hp_state);
|
||||
aligned_free(hp_state);
|
||||
#endif
|
||||
}
|
||||
#else /* aarch64 && crypto */
|
||||
@ -1464,7 +1330,6 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
{
|
||||
uint8_t text[INIT_SIZE_BYTE];
|
||||
uint8_t a[AES_BLOCK_SIZE];
|
||||
uint8_t a1[AES_BLOCK_SIZE];
|
||||
uint8_t b[AES_BLOCK_SIZE * 2];
|
||||
uint8_t c[AES_BLOCK_SIZE];
|
||||
uint8_t c1[AES_BLOCK_SIZE];
|
||||
@ -1524,10 +1389,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
// Iteration 1
|
||||
j = state_index(a);
|
||||
p = &long_state[j];
|
||||
aesb_single_round(p, c1, a);
|
||||
aesb_single_round(p, p, a);
|
||||
copy_block(c1, p);
|
||||
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
|
||||
copy_block(p, c1);
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
||||
xor_blocks(p, b);
|
||||
VARIANT1_1(p);
|
||||
|
||||
@ -1536,15 +1401,14 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
p = &long_state[j];
|
||||
copy_block(c, p);
|
||||
|
||||
copy_block(a1, a);
|
||||
VARIANT2_PORTABLE_INTEGER_MATH(c, c1);
|
||||
VARIANT4_RANDOM_MATH(a1, c, r, b, b + AES_BLOCK_SIZE);
|
||||
VARIANT4_RANDOM_MATH(a, c, r, b, b + AES_BLOCK_SIZE);
|
||||
mul(c1, c, d);
|
||||
VARIANT2_2_PORTABLE();
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
|
||||
sum_half_blocks(a1, d);
|
||||
swap_blocks(a1, c);
|
||||
xor_blocks(a1, c);
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
||||
sum_half_blocks(a, d);
|
||||
swap_blocks(a, c);
|
||||
xor_blocks(a, c);
|
||||
VARIANT1_2(U64(c) + 1);
|
||||
copy_block(p, c);
|
||||
|
||||
@ -1552,7 +1416,6 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
copy_block(b + AES_BLOCK_SIZE, b);
|
||||
}
|
||||
copy_block(b, c1);
|
||||
copy_block(a, a1);
|
||||
}
|
||||
|
||||
memcpy(text, state.init, INIT_SIZE_BYTE);
|
||||
@ -1580,9 +1443,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
#else
|
||||
// Portable implementation as a fallback
|
||||
|
||||
#define hp_jitfunc ((v4_random_math_JIT_func)NULL)
|
||||
|
||||
void cn_slow_hash_allocate_state(void)
|
||||
void slow_hash_allocate_state(void)
|
||||
{
|
||||
// Do nothing, this is just to maintain compatibility with the upgraded slow-hash.c
|
||||
return;
|
||||
@ -1675,7 +1536,6 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
union cn_slow_hash_state state;
|
||||
uint8_t text[INIT_SIZE_BYTE];
|
||||
uint8_t a[AES_BLOCK_SIZE];
|
||||
uint8_t a1[AES_BLOCK_SIZE];
|
||||
uint8_t b[AES_BLOCK_SIZE * 2];
|
||||
uint8_t c1[AES_BLOCK_SIZE];
|
||||
uint8_t c2[AES_BLOCK_SIZE];
|
||||
@ -1719,7 +1579,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
|
||||
copy_block(c1, &long_state[j]);
|
||||
aesb_single_round(c1, c1, a);
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
||||
copy_block(&long_state[j], c1);
|
||||
xor_blocks(&long_state[j], b);
|
||||
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
|
||||
@ -1727,22 +1587,23 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||
/* Iteration 2 */
|
||||
j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
|
||||
copy_block(c2, &long_state[j]);
|
||||
copy_block(a1, a);
|
||||
VARIANT2_PORTABLE_INTEGER_MATH(c2, c1);
|
||||
VARIANT4_RANDOM_MATH(a1, c2, r, b, b + AES_BLOCK_SIZE);
|
||||
VARIANT4_RANDOM_MATH(a, c2, r, b, b + AES_BLOCK_SIZE);
|
||||
mul(c1, c2, d);
|
||||
VARIANT2_2_PORTABLE();
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
|
||||
sum_half_blocks(a1, d);
|
||||
swap_blocks(a1, c2);
|
||||
xor_blocks(a1, c2);
|
||||
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
||||
swap_blocks(a, c1);
|
||||
sum_half_blocks(c1, d);
|
||||
swap_blocks(c1, c2);
|
||||
xor_blocks(c1, c2);
|
||||
VARIANT1_2(c2 + 8);
|
||||
copy_block(&long_state[j], c2);
|
||||
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
|
||||
if (variant >= 2) {
|
||||
copy_block(b + AES_BLOCK_SIZE, b);
|
||||
}
|
||||
copy_block(b, c1);
|
||||
copy_block(a, a1);
|
||||
copy_block(b, a);
|
||||
copy_block(a, c1);
|
||||
}
|
||||
|
||||
memcpy(text, state.init, INIT_SIZE_BYTE);
|
||||
|
@ -10,10 +10,7 @@ enum V4_Settings
|
||||
TOTAL_LATENCY = 15 * 3,
|
||||
|
||||
// Always generate at least 60 instructions
|
||||
NUM_INSTRUCTIONS_MIN = 60,
|
||||
|
||||
// Never generate more than 70 instructions (final RET instruction doesn't count here)
|
||||
NUM_INSTRUCTIONS_MAX = 70,
|
||||
NUM_INSTRUCTIONS = 60,
|
||||
|
||||
// Available ALUs for MUL
|
||||
// Modern CPUs typically have only 1 ALU which can do multiplications
|
||||
@ -39,9 +36,10 @@ enum V4_InstructionList
|
||||
// V4_InstructionDefinition is used to generate code from random data
|
||||
// Every random sequence of bytes is a valid code
|
||||
//
|
||||
// There are 9 registers in total:
|
||||
// There are 8 registers in total:
|
||||
// - 4 variable registers
|
||||
// - 5 constant registers initialized from loop variables
|
||||
// - 4 constant registers initialized from loop variables
|
||||
//
|
||||
// This is why dst_index is 2 bits
|
||||
enum V4_InstructionDefinition
|
||||
{
|
||||
@ -59,9 +57,9 @@ struct V4_Instruction
|
||||
};
|
||||
|
||||
#ifndef FORCEINLINE
|
||||
#if defined(__GNUC__)
|
||||
#ifdef __GNUC__
|
||||
#define FORCEINLINE __attribute__((always_inline)) inline
|
||||
#elif defined(_MSC_VER)
|
||||
#elif _MSC_VER
|
||||
#define FORCEINLINE __forceinline
|
||||
#else
|
||||
#define FORCEINLINE inline
|
||||
@ -69,9 +67,9 @@ struct V4_Instruction
|
||||
#endif
|
||||
|
||||
#ifndef UNREACHABLE_CODE
|
||||
#if defined(__GNUC__)
|
||||
#ifdef __GNUC__
|
||||
#define UNREACHABLE_CODE __builtin_unreachable()
|
||||
#elif defined(_MSC_VER)
|
||||
#elif _MSC_VER
|
||||
#define UNREACHABLE_CODE __assume(false)
|
||||
#else
|
||||
#define UNREACHABLE_CODE
|
||||
@ -143,16 +141,16 @@ static FORCEINLINE void v4_random_math(const struct V4_Instruction* code, v4_reg
|
||||
// Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency
|
||||
// I've checked all block heights < 10,000,000 and here is the distribution of program sizes:
|
||||
//
|
||||
// 60 27960
|
||||
// 61 105054
|
||||
// 62 2452759
|
||||
// 63 5115997
|
||||
// 64 1022269
|
||||
// 65 1109635
|
||||
// 66 153145
|
||||
// 67 8550
|
||||
// 68 4529
|
||||
// 69 102
|
||||
// 60 28495
|
||||
// 61 106077
|
||||
// 62 2455855
|
||||
// 63 5114930
|
||||
// 64 1020868
|
||||
// 65 1109026
|
||||
// 66 151756
|
||||
// 67 8429
|
||||
// 68 4477
|
||||
// 69 87
|
||||
|
||||
// Unroll 70 instructions here
|
||||
V4_EXEC_10(0); // instructions 0-9
|
||||
@ -178,7 +176,6 @@ static FORCEINLINE void check_data(size_t* data_index, const size_t bytes_needed
|
||||
}
|
||||
|
||||
// Generates as many random math operations as possible with given latency and ALU restrictions
|
||||
// "code" array must have space for NUM_INSTRUCTIONS_MAX+1 instructions
|
||||
static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_t height)
|
||||
{
|
||||
// MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle
|
||||
@ -200,7 +197,6 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
|
||||
memset(data, 0, sizeof(data));
|
||||
uint64_t tmp = SWAP64LE(height);
|
||||
memcpy(data, &tmp, sizeof(uint64_t));
|
||||
data[20] = -38; // change seed
|
||||
|
||||
// Set data_index past the last byte in data
|
||||
// to trigger full data update with blake hash
|
||||
@ -208,22 +204,18 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
|
||||
size_t data_index = sizeof(data);
|
||||
|
||||
int code_size;
|
||||
|
||||
// There is a small chance (1.8%) that register R8 won't be used in the generated program
|
||||
// So we keep track of it and try again if it's not used
|
||||
bool r8_used;
|
||||
do {
|
||||
int latency[9];
|
||||
int asic_latency[9];
|
||||
int latency[8];
|
||||
int asic_latency[8];
|
||||
|
||||
// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
|
||||
// byte 0: current value of the destination register
|
||||
// byte 1: instruction opcode
|
||||
// byte 2: current value of the source register
|
||||
//
|
||||
// Registers R4-R8 are constant and are treated as having the same value because when we do
|
||||
// Registers R4-R7 are constant and are treated as having the same value because when we do
|
||||
// the same operation twice with two constant source registers, it can be optimized into a single operation
|
||||
uint32_t inst_data[9] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF };
|
||||
uint32_t inst_data[8] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF };
|
||||
|
||||
bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT];
|
||||
bool is_rotation[V4_INSTRUCTION_COUNT];
|
||||
@ -242,7 +234,6 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
|
||||
code_size = 0;
|
||||
|
||||
int total_iterations = 0;
|
||||
r8_used = false;
|
||||
|
||||
// Generate random code to achieve minimal required latency for our abstract CPU
|
||||
// Try to get this latency for all 4 registers
|
||||
@ -286,9 +277,9 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
|
||||
// Don't do ADD/SUB/XOR with the same register
|
||||
if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b))
|
||||
{
|
||||
// Use register R8 as source instead
|
||||
b = 8;
|
||||
src_index = 8;
|
||||
// a is always < 4, so we don't need to check bounds here
|
||||
b = a + 4;
|
||||
src_index = b;
|
||||
}
|
||||
|
||||
// Don't do rotation with the same destination twice because it's equal to a single rotation
|
||||
@ -368,11 +359,6 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
|
||||
code[code_size].src_index = src_index;
|
||||
code[code_size].C = 0;
|
||||
|
||||
if (src_index == 8)
|
||||
{
|
||||
r8_used = true;
|
||||
}
|
||||
|
||||
if (opcode == ADD)
|
||||
{
|
||||
// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
|
||||
@ -387,7 +373,7 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
|
||||
}
|
||||
|
||||
++code_size;
|
||||
if (code_size >= NUM_INSTRUCTIONS_MIN)
|
||||
if (code_size >= NUM_INSTRUCTIONS)
|
||||
{
|
||||
break;
|
||||
}
|
||||
@ -402,7 +388,7 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
|
||||
// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
|
||||
// Get this latency for at least 1 of the 4 registers
|
||||
const int prev_code_size = code_size;
|
||||
while ((code_size < NUM_INSTRUCTIONS_MAX) && (asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY))
|
||||
while ((asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY))
|
||||
{
|
||||
int min_idx = 0;
|
||||
int max_idx = 0;
|
||||
@ -424,11 +410,9 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
|
||||
++code_size;
|
||||
}
|
||||
|
||||
// There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time
|
||||
// It never does more than 4 iterations for all block heights < 10,000,000
|
||||
} while (!r8_used || (code_size < NUM_INSTRUCTIONS_MIN) || (code_size > NUM_INSTRUCTIONS_MAX));
|
||||
// There is ~99.8% chance that code_size >= NUM_INSTRUCTIONS here, so second iteration is required rarely
|
||||
} while (code_size < NUM_INSTRUCTIONS);
|
||||
|
||||
// It's guaranteed that NUM_INSTRUCTIONS_MIN <= code_size <= NUM_INSTRUCTIONS_MAX here
|
||||
// Add final instruction to stop the interpreter
|
||||
code[code_size].opcode = RET;
|
||||
code[code_size].dst_index = 0;
|
||||
|
Loading…
x
Reference in New Issue
Block a user