Cryptonight variant 4 aka CryptonightR

It introduces random integer math into the main loop.
This commit is contained in:
SChernykh 2019-02-04 17:49:19 +01:00 committed by wowario
parent df637cd08c
commit 870b4138a6
No known key found for this signature in database
GPG Key ID: 24DCBE762DE9C111
9 changed files with 494 additions and 24 deletions

View File

@ -73,18 +73,18 @@ namespace crypto {
inline void generate_chacha_key(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
for (uint64_t n = 1; n < kdf_rounds; ++n)
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
}
inline void generate_chacha_key_prehashed(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 1/*prehashed*/);
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 1/*prehashed*/, 0/*height*/);
for (uint64_t n = 1; n < kdf_rounds; ++n)
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
}

View File

@ -79,7 +79,7 @@ enum {
};
void cn_fast_hash(const void *data, size_t length, char *hash);
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed);
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height);
void hash_extra_blake(const void *data, size_t length, char *hash);
void hash_extra_groestl(const void *data, size_t length, char *hash);

View File

@ -71,12 +71,12 @@ namespace crypto {
return h;
}
inline void cn_slow_hash(const void *data, std::size_t length, hash &hash, int variant = 0) {
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 0/*prehashed*/);
inline void cn_slow_hash(const void *data, std::size_t length, hash &hash, int variant = 0, uint64_t height = 0) {
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 0/*prehashed*/, height);
}
inline void cn_slow_hash_prehashed(const void *data, std::size_t length, hash &hash, int variant = 0) {
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 1/*prehashed*/);
inline void cn_slow_hash_prehashed(const void *data, std::size_t length, hash &hash, int variant = 0, uint64_t height = 0) {
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 1/*prehashed*/, height);
}
inline void tree_hash(const hash *hashes, std::size_t count, hash &root_hash) {

View File

@ -39,6 +39,7 @@
#include "hash-ops.h"
#include "oaes_lib.h"
#include "variant2_int_sqrt.h"
#include "variant4_random_math.h"
#define MEMORY (1 << 21) // 2MB scratchpad
#define ITER (1 << 20)
@ -172,7 +173,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
const uint64_t sqrt_input = SWAP64LE(((uint64_t*)(ptr))[0]) + division_result
#define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \
do if (variant >= 2) \
do if ((variant == 2) || (variant == 3)) \
{ \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \
@ -182,7 +183,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50)
// double precision floating point type has enough bits of precision on current platform
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
do if (variant >= 2) \
do if ((variant == 2) || (variant == 3)) \
{ \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \
@ -192,7 +193,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
// double precision floating point type is not good enough on current platform
// fall back to the reference code (integer only)
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
do if (variant >= 2) \
do if ((variant == 2) || (variant == 3)) \
{ \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \
@ -214,6 +215,33 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
lo ^= SWAP64LE(*(U64(hp_state + (j ^ 0x20)) + 1)); \
} while (0)
#define VARIANT4_RANDOM_MATH_INIT() \
v4_reg r[8]; \
struct V4_Instruction code[TOTAL_LATENCY * ALU_COUNT + 1]; \
do if (variant >= 4) \
{ \
v4_reg* data = (v4_reg*)(state.hs.w + 12); \
r[0] = data[0]; \
r[1] = data[1]; \
r[2] = data[2]; \
r[3] = data[3]; \
v4_random_math_init(code, height); \
} while (0)
#define VARIANT4_RANDOM_MATH(a, b, r, _b, _b1) \
do if (variant >= 4) \
{ \
if (sizeof(v4_reg) == sizeof(uint32_t)) \
U64(b)[0] ^= (r[0] + r[1]) | ((uint64_t)(r[2] + r[3]) << 32); \
else \
U64(b)[0] ^= (r[0] + r[1]) ^ (r[2] + r[3]); \
r[4] = ((v4_reg*)(a))[0]; \
r[5] = ((v4_reg*)(a))[sizeof(uint64_t) / sizeof(v4_reg)]; \
r[6] = ((v4_reg*)(_b))[0]; \
r[7] = ((v4_reg*)(_b1))[0]; \
v4_random_math(code, r); \
} while (0)
#if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64)))
// Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI
@ -298,6 +326,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
p = U64(&hp_state[j]); \
b[0] = p[0]; b[1] = p[1]; \
VARIANT2_INTEGER_MATH_SSE2(b, c); \
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
__mul(); \
VARIANT2_2(); \
VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
@ -694,7 +723,7 @@ void slow_hash_free_state(void)
* @param length the length in bytes of the data
* @param hash a pointer to a buffer in which the final 256 bit hash will be stored
*/
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{
RDATA_ALIGN16 uint8_t expandedKey[240]; /* These buffers are aligned to use later with SSE functions */
@ -730,6 +759,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_INIT64();
VARIANT2_INIT64();
VARIANT4_RANDOM_MATH_INIT();
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
* the 2MB large random access buffer.
@ -901,6 +931,7 @@ union cn_slow_hash_state
p = U64(&hp_state[j]); \
b[0] = p[0]; b[1] = p[1]; \
VARIANT2_PORTABLE_INTEGER_MATH(b, c); \
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
__mul(); \
VARIANT2_2(); \
VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
@ -1063,7 +1094,7 @@ STATIC INLINE void aligned_free(void *ptr)
}
#endif /* FORCE_USE_HEAP */
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{
RDATA_ALIGN16 uint8_t expandedKey[240];
@ -1100,6 +1131,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_INIT64();
VARIANT2_INIT64();
VARIANT4_RANDOM_MATH_INIT();
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
* the 2MB large random access buffer.
@ -1278,7 +1310,7 @@ STATIC INLINE void xor_blocks(uint8_t* a, const uint8_t* b)
U64(a)[1] ^= U64(b)[1];
}
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{
uint8_t text[INIT_SIZE_BYTE];
uint8_t a[AES_BLOCK_SIZE];
@ -1317,6 +1349,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_INIT64();
VARIANT2_INIT64();
VARIANT4_RANDOM_MATH_INIT();
// use aligned data
memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
@ -1353,6 +1386,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
copy_block(c, p);
VARIANT2_PORTABLE_INTEGER_MATH(c, c1);
VARIANT4_RANDOM_MATH(a, c, r, b, b + AES_BLOCK_SIZE);
mul(c1, c, d);
VARIANT2_2_PORTABLE();
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
@ -1476,7 +1510,7 @@ union cn_slow_hash_state {
};
#pragma pack(pop)
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) {
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height) {
#ifndef FORCE_USE_HEAP
uint8_t long_state[MEMORY];
#else
@ -1505,6 +1539,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_PORTABLE_INIT();
VARIANT2_PORTABLE_INIT();
VARIANT4_RANDOM_MATH_INIT();
oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
@ -1537,6 +1572,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
copy_block(c2, &long_state[j]);
VARIANT2_PORTABLE_INTEGER_MATH(c2, c1);
VARIANT4_RANDOM_MATH(a, c2, r, b, b + AES_BLOCK_SIZE);
mul(c1, c2, d);
VARIANT2_2_PORTABLE();
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);

View File

@ -0,0 +1,405 @@
#ifndef VARIANT4_RANDOM_MATH_H
#define VARIANT4_RANDOM_MATH_H
// Register size can be configured to either 32 bit (uint32_t) or 64 bit (uint64_t)
typedef uint32_t v4_reg;
enum V4_Settings
{
// Generate code with minimal theoretical latency = 45 cycles, which is equivalent to 15 multiplications
TOTAL_LATENCY = 15 * 3,
// Always generate at least 60 instructions
NUM_INSTRUCTIONS = 60,
// Available ALUs for MUL
// Modern CPUs typically have only 1 ALU which can do multiplications
ALU_COUNT_MUL = 1,
// Total available ALUs
// Modern CPUs have 4 ALUs, but we use only 3 because random math executes together with other main loop code
ALU_COUNT = 3,
};
enum V4_InstructionList
{
MUL, // a*b
ADD, // a+b + C, -128 <= C <= 127
SUB, // a-b
ROR, // rotate right "a" by "b & 31" bits
ROL, // rotate left "a" by "b & 31" bits
XOR, // a^b
RET, // finish execution
V4_INSTRUCTION_COUNT = RET,
};
// V4_InstructionCompact is used to generate code from random data
// Every random sequence of bytes is a valid code
//
// There are 8 registers in total:
// - 4 variable registers
// - 4 constant registers initialized from loop variables
//
// This is why dst_index is 2 bits
struct V4_InstructionCompact
{
uint8_t opcode : 3;
uint8_t dst_index : 2;
uint8_t src_index : 3;
};
struct V4_Instruction
{
uint8_t opcode;
uint8_t dst_index;
uint8_t src_index;
uint32_t C;
};
#ifndef FORCEINLINE
#ifdef __GNUC__
#define FORCEINLINE __attribute__((always_inline)) inline
#elif _MSC_VER
#define FORCEINLINE __forceinline
#else
#define FORCEINLINE inline
#endif
#endif
#ifndef UNREACHABLE_CODE
#ifdef __GNUC__
#define UNREACHABLE_CODE __builtin_unreachable()
#elif _MSC_VER
#define UNREACHABLE_CODE __assume(false)
#else
#define UNREACHABLE_CODE
#endif
#endif
// Random math interpreter's loop is fully unrolled and inlined to achieve 100% branch prediction on CPU:
// every switch-case will point to the same destination on every iteration of Cryptonight main loop
//
// This is about as fast as it can get without using low-level machine code generation
static FORCEINLINE void v4_random_math(const struct V4_Instruction* code, v4_reg* r)
{
enum
{
REG_BITS = sizeof(v4_reg) * 8,
};
#define V4_EXEC(i) \
{ \
const struct V4_Instruction* op = code + i; \
const v4_reg src = r[op->src_index]; \
v4_reg* dst = r + op->dst_index; \
switch (op->opcode) \
{ \
case MUL: \
*dst *= src; \
break; \
case ADD: \
*dst += src + op->C; \
break; \
case SUB: \
*dst -= src; \
break; \
case ROR: \
{ \
const uint32_t shift = src % REG_BITS; \
*dst = (*dst >> shift) | (*dst << (REG_BITS - shift)); \
} \
break; \
case ROL: \
{ \
const uint32_t shift = src % REG_BITS; \
*dst = (*dst << shift) | (*dst >> (REG_BITS - shift)); \
} \
break; \
case XOR: \
*dst ^= src; \
break; \
case RET: \
return; \
default: \
UNREACHABLE_CODE; \
break; \
} \
}
#define V4_EXEC_10(j) \
V4_EXEC(j + 0) \
V4_EXEC(j + 1) \
V4_EXEC(j + 2) \
V4_EXEC(j + 3) \
V4_EXEC(j + 4) \
V4_EXEC(j + 5) \
V4_EXEC(j + 6) \
V4_EXEC(j + 7) \
V4_EXEC(j + 8) \
V4_EXEC(j + 9)
// Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency
// I've checked all block heights < 10,000,000 and here is the distribution of program sizes:
//
// 60 28495
// 61 106077
// 62 2455855
// 63 5114930
// 64 1020868
// 65 1109026
// 66 151756
// 67 8429
// 68 4477
// 69 87
// Unroll 70 instructions here
V4_EXEC_10(0); // instructions 0-9
V4_EXEC_10(10); // instructions 10-19
V4_EXEC_10(20); // instructions 20-29
V4_EXEC_10(30); // instructions 30-39
V4_EXEC_10(40); // instructions 40-49
V4_EXEC_10(50); // instructions 50-59
V4_EXEC_10(60); // instructions 60-69
#undef V4_EXEC_10
#undef V4_EXEC
}
// If we don't have enough data available, generate more
static FORCEINLINE void check_data(size_t* data_index, const size_t bytes_needed, char* data, const size_t data_size)
{
if (*data_index + bytes_needed > data_size)
{
hash_extra_blake(data, sizeof(data), data);
*data_index = 0;
}
}
// Generates as many random math operations as possible with given latency and ALU restrictions
static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_t height)
{
// MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle
// These latencies match real-life instruction latencies for Intel CPUs starting from Sandy Bridge and up to Skylake/Coffee lake
//
// AMD Ryzen has the same latencies except 1-cycle ROR/ROL, so it'll be a bit faster than Intel Sandy Bridge and newer processors
// Surprisingly, Intel Nehalem also has 1-cycle ROR/ROL, so it'll also be faster than Intel Sandy Bridge and newer processors
// AMD Bulldozer has 4 cycles latency for MUL (slower than Intel) and 1 cycle for ROR/ROL (faster than Intel), so average performance will be the same
// Source: https://www.agner.org/optimize/instruction_tables.pdf
const int op_latency[V4_INSTRUCTION_COUNT] = { 3, 2, 1, 2, 2, 1 };
// Instruction latencies for theoretical ASIC implementation
const int asic_op_latency[V4_INSTRUCTION_COUNT] = { 3, 1, 1, 1, 1, 1 };
// Available ALUs for each instruction
const int op_ALUs[V4_INSTRUCTION_COUNT] = { ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT };
char data[32];
memset(data, 0, sizeof(data));
*((uint64_t*)data) = height;
size_t data_index = sizeof(data);
int code_size;
do {
int latency[8];
int asic_latency[8];
// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
// byte 0: current value of the destination register
// byte 1: instruction opcode
// byte 2: current value of the source register
//
// Registers R4-R7 are constant and are threatened as having the same value because when we do
// the same operation twice with two constant source registers, it can be optimized into a single operation
int inst_data[8] = { 0, 1, 2, 3, -1, -1, -1, -1 };
bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT];
bool is_rotation[V4_INSTRUCTION_COUNT];
bool rotated[4];
int rotate_count = 0;
memset(latency, 0, sizeof(latency));
memset(asic_latency, 0, sizeof(asic_latency));
memset(alu_busy, 0, sizeof(alu_busy));
memset(is_rotation, 0, sizeof(is_rotation));
memset(rotated, 0, sizeof(rotated));
is_rotation[ROR] = true;
is_rotation[ROL] = true;
int num_retries = 0;
code_size = 0;
// Generate random code to achieve minimal required latency for our abstract CPU
// Try to get this latency for all 4 registers
while (((latency[0] < TOTAL_LATENCY) || (latency[1] < TOTAL_LATENCY) || (latency[2] < TOTAL_LATENCY) || (latency[3] < TOTAL_LATENCY)) && (num_retries < 64))
{
check_data(&data_index, 1, data, sizeof(data));
struct V4_InstructionCompact op = ((struct V4_InstructionCompact*)data)[data_index++];
// MUL = opcodes 0-2
// ADD = opcode 3
// SUB = opcode 4
// ROR/ROL = opcode 5, shift direction is selected randomly
// XOR = opcodes 6-7
uint8_t opcode = (op.opcode <= 2) ? MUL : (op.opcode - 2);
if (op.opcode == 5)
{
check_data(&data_index, 1, data, sizeof(data));
opcode = (data[data_index++] >= 0) ? ROR : ROL;
}
else if (op.opcode >= 6)
{
opcode = XOR;
}
const int a = op.dst_index;
int b = op.src_index;
// Don't do ADD/SUB/XOR with the same register
if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b))
{
// a is always < 4, so we don't need to check bounds here
b = a + 4;
op.src_index = b;
}
// Don't do rotation with the same destination twice because it's equal to a single rotation
if (is_rotation[opcode] && rotated[a])
{
continue;
}
// Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized:
// 2xADD(a, b, C) = ADD(a, b*2, C1+C2), same for SUB and rotations
// 2xXOR(a, b) = NOP
if ((opcode != MUL) && ((inst_data[a] & 0xFFFF00) == (opcode << 8) + ((inst_data[b] & 255) << 16)))
{
continue;
}
// Find which ALU is available (and when) for this instruction
int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b];
int alu_index = -1;
while (next_latency < TOTAL_LATENCY)
{
for (int i = op_ALUs[opcode] - 1; i >= 0; --i)
{
if (!alu_busy[next_latency][i])
{
// ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
if ((opcode == ADD) && alu_busy[next_latency + 1][i])
{
continue;
}
// Rotation can only start when previous rotation is finished, so do an additional availability check
if (is_rotation[opcode] && (next_latency < rotate_count * op_latency[opcode]))
{
continue;
}
alu_index = i;
break;
}
}
if (alu_index >= 0)
{
break;
}
++next_latency;
}
// Don't generate instructions that leave some register unchanged for more than 7 cycles
if (next_latency > latency[a] + 7)
{
continue;
}
next_latency += op_latency[opcode];
if (next_latency <= TOTAL_LATENCY)
{
if (is_rotation[opcode])
{
++rotate_count;
}
// Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined
alu_busy[next_latency - op_latency[opcode]][alu_index] = true;
latency[a] = next_latency;
// ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple
asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[opcode];
rotated[a] = is_rotation[opcode];
inst_data[a] = code_size + (opcode << 8) + ((inst_data[b] & 255) << 16);
code[code_size].opcode = opcode;
code[code_size].dst_index = op.dst_index;
code[code_size].src_index = op.src_index;
code[code_size].C = 0;
if (opcode == ADD)
{
// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
alu_busy[next_latency - op_latency[opcode] + 1][alu_index] = true;
// ADD instruction requires 4 more random bytes for 32-bit constant "C" in "a = a + b + C"
check_data(&data_index, sizeof(uint32_t), data, sizeof(data));
code[code_size].C = *((uint32_t*)&data[data_index]);
data_index += sizeof(uint32_t);
}
++code_size;
if (code_size >= NUM_INSTRUCTIONS)
{
break;
}
}
else
{
++num_retries;
}
}
// ASIC has more execution resources and can extract as much parallelism from the code as possible
// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
// Get this latency for at least 1 of the 4 registers
const int prev_code_size = code_size;
while ((asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY))
{
int min_idx = 0;
int max_idx = 0;
for (int i = 1; i < 4; ++i)
{
if (asic_latency[i] < asic_latency[min_idx]) min_idx = i;
if (asic_latency[i] > asic_latency[max_idx]) max_idx = i;
}
const uint8_t pattern[3] = { ROR, MUL, MUL };
const uint8_t opcode = pattern[(code_size - prev_code_size) % 3];
latency[min_idx] = latency[max_idx] + op_latency[opcode];
asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[opcode];
code[code_size].opcode = opcode;
code[code_size].dst_index = min_idx;
code[code_size].src_index = max_idx;
code[code_size].C = 0;
++code_size;
}
// There is ~99.8% chance that code_size >= NUM_INSTRUCTIONS here, so second iteration is required rarely
} while (code_size < NUM_INSTRUCTIONS);
// Add final instruction to stop the interpreter
code[code_size].opcode = RET;
code[code_size].dst_index = 0;
code[code_size].src_index = 0;
code[code_size].C = 0;
return code_size;
}
#endif

View File

@ -1149,8 +1149,8 @@ namespace cryptonote
bool get_block_longhash(const block& b, crypto::hash& res, uint64_t height)
{
blobdata bd = get_block_hashing_blob(b);
const int cn_variant = b.major_version >= 9 ? 2 : 1;
crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_variant);
const int cn_variant = b.major_version >= 11 ? 4 : b.major_version >= 9 && b.major_version <= 10 ? 2 : 1;
crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_variant, height);
return true;
}
//---------------------------------------------------------------

View File

@ -43,7 +43,7 @@ set_property(TARGET hash-tests
PROPERTY
FOLDER "tests")
foreach (hash IN ITEMS fast slow slow-1 slow-2 tree extra-blake extra-groestl extra-jh extra-skein)
foreach (hash IN ITEMS fast slow slow-1 slow-2 slow-4 tree extra-blake extra-groestl extra-jh extra-skein)
add_test(
NAME "hash-${hash}"
COMMAND hash-tests "${hash}" "${CMAKE_CURRENT_SOURCE_DIR}/tests-${hash}.txt")

View File

@ -44,6 +44,13 @@ using namespace std;
using namespace crypto;
typedef crypto::hash chash;
struct V4_Data
{
const void* data;
size_t length;
uint64_t height;
};
PUSH_WARNINGS
DISABLE_VS_WARNINGS(4297)
extern "C" {
@ -54,13 +61,17 @@ extern "C" {
tree_hash((const char (*)[crypto::HASH_SIZE]) data, length >> 5, hash);
}
static void cn_slow_hash_0(const void *data, size_t length, char *hash) {
return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/);
return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/, 0/*height*/);
}
static void cn_slow_hash_1(const void *data, size_t length, char *hash) {
return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/);
return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/, 0/*height*/);
}
static void cn_slow_hash_2(const void *data, size_t length, char *hash) {
return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/);
return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/, 0/*height*/);
}
static void cn_slow_hash_4(const void *data, size_t, char *hash) {
const V4_Data* p = reinterpret_cast<const V4_Data*>(data);
return cn_slow_hash(p->data, p->length, hash, 4/*variant*/, 0/*prehashed*/, p->height);
}
}
POP_WARNINGS
@ -72,7 +83,7 @@ struct hash_func {
} hashes[] = {{"fast", cn_fast_hash}, {"slow", cn_slow_hash_0}, {"tree", hash_tree},
{"extra-blake", hash_extra_blake}, {"extra-groestl", hash_extra_groestl},
{"extra-jh", hash_extra_jh}, {"extra-skein", hash_extra_skein},
{"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}};
{"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}, {"slow-4", cn_slow_hash_4}};
int test_variant2_int_sqrt();
int test_variant2_int_sqrt_ref();
@ -140,7 +151,15 @@ int main(int argc, char *argv[]) {
input.exceptions(ios_base::badbit | ios_base::failbit | ios_base::eofbit);
input.clear(input.rdstate());
get(input, data);
f(data.data(), data.size(), (char *) &actual);
if (f == cn_slow_hash_4) {
V4_Data d;
d.data = data.data();
d.length = data.size();
get(input, d.height);
f(&d, 0, (char *) &actual);
} else {
f(data.data(), data.size(), (char *) &actual);
}
if (expected != actual) {
size_t i;
cerr << "Hash mismatch on test " << test << endl << "Input: ";

View File

@ -0,0 +1,10 @@
da8b319c5305ee30c4427f6d92fc022eadf64d6ddc190a98f76f340e36501947 5468697320697320612074657374205468697320697320612074657374205468697320697320612074657374 1806260
5651baabf26ce6a54e1fd151b6569cba720c353f9fc58af365aaebc55269afe0 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656374657475722061646970697363696e67 1806261
2962bf37adbfea15929b937a208e13975b3cfaa4d45b6c0c9e3cb83382587bf6 656c69742c2073656420646f20656975736d6f642074656d706f7220696e6369646964756e74207574206c61626f7265 1806262
31be4ac4701e3f2687d13623b77842b1f3a7f63ffa8eff1f8779b051fcff4aa7 657420646f6c6f7265206d61676e6120616c697175612e20557420656e696d206164206d696e696d2076656e69616d2c 1806263
842dd9bc384f46700ff5b451b8fd6d123c24b9bd559813e65b40cbc5b6fd4e24 71756973206e6f737472756420657865726369746174696f6e20756c6c616d636f206c61626f726973206e697369 1806264
470684872a046ac5934f8fa6d14ce16b6dab3068cf5f7c1db4c878deac3319e0 757420616c697175697020657820656120636f6d6d6f646f20636f6e7365717561742e20447569732061757465 1806265
b3e98b59ed7e114356ab1b437b607bc2420cb650d6993d75b5027cfb341d7e65 697275726520646f6c6f7220696e20726570726568656e646572697420696e20766f6c7570746174652076656c6974 1806266
492cd553721b23337b30ef163336dc4411f6331d929be113a465dbabbe3794a6 657373652063696c6c756d20646f6c6f726520657520667567696174206e756c6c612070617269617475722e 1806267
9e5406153d8419dbecf083a460e161ad88c3d51bc6dd28df7303ef1b81cf76c9 4578636570746575722073696e74206f6363616563617420637570696461746174206e6f6e2070726f6964656e742c 1806268
f28575078964f99e4f8177373faf6a0b62d056e161289df048c83a4dd017b9fd 73756e7420696e2063756c706120717569206f666669636961206465736572756e74206d6f6c6c697420616e696d20696420657374206c61626f72756d2e 1806269