wownero/src/multisig/multisig.cpp

153 lines
7.5 KiB
C++
Raw Normal View History

// Copyright (c) 2017, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <unordered_set>
#include "include_base_utils.h"
#include "crypto/crypto.h"
#include "ringct/rctOps.h"
#include "cryptonote_basic/account.h"
#include "cryptonote_basic/cryptonote_format_utils.h"
#include "multisig.h"
#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "multisig"
using namespace std;
namespace cryptonote
{
//-----------------------------------------------------------------
bool generate_key_image_helper_old(const account_keys& ack, const crypto::public_key& tx_public_key, size_t real_output_index, keypair& in_ephemeral, crypto::key_image& ki)
{
crypto::key_derivation recv_derivation = AUTO_VAL_INIT(recv_derivation);
bool r = crypto::generate_key_derivation(tx_public_key, ack.m_view_secret_key, recv_derivation);
CHECK_AND_ASSERT_MES(r, false, "key image helper: failed to generate_key_derivation(" << tx_public_key << ", " << ack.m_view_secret_key << ")");
r = crypto::derive_public_key(recv_derivation, real_output_index, ack.m_account_address.m_spend_public_key, in_ephemeral.pub);
CHECK_AND_ASSERT_MES(r, false, "key image helper: failed to derive_public_key(" << recv_derivation << ", " << real_output_index << ", " << ack.m_account_address.m_spend_public_key << ")");
crypto::derive_secret_key(recv_derivation, real_output_index, ack.m_spend_secret_key, in_ephemeral.sec);
crypto::generate_key_image(in_ephemeral.pub, in_ephemeral.sec, ki);
return true;
}
//-----------------------------------------------------------------
void generate_multisig_N_N(const account_keys &keys, const std::vector<crypto::public_key> &spend_keys, std::vector<crypto::secret_key> &multisig_keys, rct::key &spend_skey, rct::key &spend_pkey)
{
// the multisig spend public key is the sum of all spend public keys
multisig_keys.clear();
spend_pkey = rct::pk2rct(keys.m_account_address.m_spend_public_key);
for (const auto &k: spend_keys)
rct::addKeys(spend_pkey, spend_pkey, rct::pk2rct(k));
multisig_keys.push_back(keys.m_spend_secret_key);
spend_skey = rct::sk2rct(keys.m_spend_secret_key);
}
//-----------------------------------------------------------------
void generate_multisig_N1_N(const account_keys &keys, const std::vector<crypto::public_key> &spend_keys, std::vector<crypto::secret_key> &multisig_keys, rct::key &spend_skey, rct::key &spend_pkey)
{
multisig_keys.clear();
spend_pkey = rct::identity();
spend_skey = rct::zero();
// create all our composite private keys
for (const auto &k: spend_keys)
{
rct::keyV data;
data.push_back(rct::scalarmultKey(rct::pk2rct(k), rct::sk2rct(keys.m_spend_secret_key)));
static const rct::key salt = { {'M', 'u', 'l', 't' , 'i', 's', 'i', 'g' , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } };
data.push_back(salt);
rct::key msk = rct::hash_to_scalar(data);
multisig_keys.push_back(rct::rct2sk(msk));
sc_add(spend_skey.bytes, spend_skey.bytes, msk.bytes);
}
}
//-----------------------------------------------------------------
crypto::secret_key generate_multisig_view_secret_key(const crypto::secret_key &skey, const std::vector<crypto::secret_key> &skeys)
{
crypto::hash hash;
crypto::cn_fast_hash(&skey, sizeof(crypto::hash), hash);
rct::key view_skey = rct::hash2rct(hash);
for (const auto &k: skeys)
sc_add(view_skey.bytes, view_skey.bytes, rct::sk2rct(k).bytes);
return rct::rct2sk(view_skey);
}
//-----------------------------------------------------------------
crypto::public_key generate_multisig_N1_N_spend_public_key(const std::vector<crypto::public_key> &pkeys)
{
rct::key spend_public_key = rct::identity();
for (const auto &pk: pkeys)
{
rct::addKeys(spend_public_key, spend_public_key, rct::pk2rct(pk));
}
return rct::rct2pk(spend_public_key);
}
//-----------------------------------------------------------------
bool generate_multisig_key_image(const account_keys &keys, const crypto::public_key& tx_public_key, size_t real_output_index, cryptonote::keypair& in_ephemeral, crypto::key_image& ki, size_t multisig_key_index)
{
if (multisig_key_index >= keys.m_multisig_keys.size())
return false;
if (!cryptonote::generate_key_image_helper_old(keys, tx_public_key, real_output_index, in_ephemeral, ki))
return false;
// we got the ephemeral keypair, but the key image isn't right as it's done as per our private spend key, which is multisig
crypto::generate_key_image(in_ephemeral.pub, keys.m_multisig_keys[multisig_key_index], ki);
return true;
}
//-----------------------------------------------------------------
void generate_multisig_LR(const crypto::public_key pkey, const crypto::secret_key &k, crypto::public_key &L, crypto::public_key &R)
{
rct::scalarmultBase((rct::key&)L, rct::sk2rct(k));
crypto::generate_key_image(pkey, k, (crypto::key_image&)R);
}
//-----------------------------------------------------------------
bool generate_multisig_composite_key_image(const account_keys &keys, const crypto::public_key &tx_public_key, size_t real_output_index, const std::vector<crypto::key_image> &pkis, crypto::key_image &ki)
{
cryptonote::keypair in_ephemeral;
if (!cryptonote::generate_key_image_helper_old(keys, tx_public_key, real_output_index, in_ephemeral, ki))
return false;
std::unordered_set<crypto::key_image> used;
for (size_t m = 0; m < keys.m_multisig_keys.size(); ++m)
{
crypto::key_image pki;
bool r = cryptonote::generate_multisig_key_image(keys, tx_public_key, real_output_index, in_ephemeral, pki, m);
if (!r)
return false;
used.insert(pki);
}
for (const auto &pki: pkis)
{
if (used.find(pki) == used.end())
{
used.insert(pki);
rct::addKeys((rct::key&)ki, rct::ki2rct(ki), rct::ki2rct(pki));
}
}
return true;
}
//-----------------------------------------------------------------
}