wownero/src/ringct/multiexp.cc

240 lines
8.3 KiB
C++
Raw Normal View History

2018-01-09 13:51:17 +00:00
// Copyright (c) 2017, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Adapted from Python code by Sarang Noether
#include "misc_log_ex.h"
#include "common/perf_timer.h"
extern "C"
{
#include "crypto/crypto-ops.h"
}
#include "rctOps.h"
#include "multiexp.h"
#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "multiexp.boscoster"
//#define MULTIEXP_PERF(x) x
#define MULTIEXP_PERF(x)
namespace rct
{
static inline bool operator<(const rct::key &k0, const rct::key&k1)
{
for (int n = 31; n >= 0; --n)
{
if (k0.bytes[n] < k1.bytes[n])
return true;
if (k0.bytes[n] > k1.bytes[n])
return false;
}
return false;
}
static inline rct::key div2(const rct::key &k)
{
rct::key res;
int carry = 0;
for (int n = 31; n >= 0; --n)
{
int new_carry = (k.bytes[n] & 1) << 7;
res.bytes[n] = k.bytes[n] / 2 + carry;
carry = new_carry;
}
return res;
}
rct::key bos_coster_heap_conv(std::vector<MultiexpData> &data)
{
MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
size_t points = data.size();
CHECK_AND_ASSERT_THROW_MES(points > 1, "Not enough points");
std::vector<size_t> heap(points);
for (size_t n = 0; n < points; ++n)
heap[n] = n;
auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; };
std::make_heap(heap.begin(), heap.end(), Comp);
MULTIEXP_PERF(PERF_TIMER_STOP(setup));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
while (heap.size() > 1)
{
MULTIEXP_PERF(PERF_TIMER_RESUME(pop));
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index1 = heap.back();
heap.pop_back();
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index2 = heap.back();
heap.pop_back();
MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
MULTIEXP_PERF(PERF_TIMER_RESUME(add));
ge_cached cached;
ge_p3_to_cached(&cached, &data[index1].point);
ge_p1p1 p1;
ge_add(&p1, &data[index2].point, &cached);
ge_p1p1_to_p3(&data[index2].point, &p1);
MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
MULTIEXP_PERF(PERF_TIMER_RESUME(sub));
sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes);
MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
MULTIEXP_PERF(PERF_TIMER_RESUME(push));
if (!(data[index1].scalar == rct::zero()))
{
heap.push_back(index1);
std::push_heap(heap.begin(), heap.end(), Comp);
}
heap.push_back(index2);
std::push_heap(heap.begin(), heap.end(), Comp);
MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
}
MULTIEXP_PERF(PERF_TIMER_STOP(push));
MULTIEXP_PERF(PERF_TIMER_STOP(sub));
MULTIEXP_PERF(PERF_TIMER_STOP(add));
MULTIEXP_PERF(PERF_TIMER_STOP(pop));
MULTIEXP_PERF(PERF_TIMER_STOP(loop));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000));
//return rct::scalarmultKey(data[index1].point, data[index1].scalar);
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index1 = heap.back();
heap.pop_back();
ge_p2 p2;
ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point);
rct::key res;
ge_tobytes(res.bytes, &p2);
return res;
}
rct::key bos_coster_heap_conv_robust(std::vector<MultiexpData> &data)
{
MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
size_t points = data.size();
CHECK_AND_ASSERT_THROW_MES(points > 1, "Not enough points");
std::vector<size_t> heap(points);
for (size_t n = 0; n < points; ++n)
heap[n] = n;
auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; };
std::make_heap(heap.begin(), heap.end(), Comp);
MULTIEXP_PERF(PERF_TIMER_STOP(setup));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(div, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(div));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
while (heap.size() > 1)
{
MULTIEXP_PERF(PERF_TIMER_RESUME(pop));
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index1 = heap.back();
heap.pop_back();
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index2 = heap.back();
heap.pop_back();
MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
ge_cached cached;
ge_p1p1 p1;
MULTIEXP_PERF(PERF_TIMER_RESUME(div));
while (1)
{
rct::key s1_2 = div2(data[index1].scalar);
if (!(data[index2].scalar < s1_2))
break;
if (data[index1].scalar.bytes[0] & 1)
{
data.resize(data.size()+1);
data.back().scalar = rct::identity();
data.back().point = data[index1].point;
heap.push_back(data.size() - 1);
std::push_heap(heap.begin(), heap.end(), Comp);
}
data[index1].scalar = div2(data[index1].scalar);
ge_p3_to_cached(&cached, &data[index1].point);
ge_add(&p1, &data[index1].point, &cached);
ge_p1p1_to_p3(&data[index1].point, &p1);
}
MULTIEXP_PERF(PERF_TIMER_PAUSE(div));
MULTIEXP_PERF(PERF_TIMER_RESUME(add));
ge_p3_to_cached(&cached, &data[index1].point);
ge_add(&p1, &data[index2].point, &cached);
ge_p1p1_to_p3(&data[index2].point, &p1);
MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
MULTIEXP_PERF(PERF_TIMER_RESUME(sub));
sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes);
MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
MULTIEXP_PERF(PERF_TIMER_RESUME(push));
if (!(data[index1].scalar == rct::zero()))
{
heap.push_back(index1);
std::push_heap(heap.begin(), heap.end(), Comp);
}
heap.push_back(index2);
std::push_heap(heap.begin(), heap.end(), Comp);
MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
}
MULTIEXP_PERF(PERF_TIMER_STOP(push));
MULTIEXP_PERF(PERF_TIMER_STOP(sub));
MULTIEXP_PERF(PERF_TIMER_STOP(add));
MULTIEXP_PERF(PERF_TIMER_STOP(pop));
MULTIEXP_PERF(PERF_TIMER_STOP(loop));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000));
//return rct::scalarmultKey(data[index1].point, data[index1].scalar);
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index1 = heap.back();
heap.pop_back();
ge_p2 p2;
ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point);
rct::key res;
ge_tobytes(res.bytes, &p2);
return res;
}
}