1776 lines
63 KiB
C++
Raw Normal View History

// Copyright (c) 2018, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <algorithm>
#include <atomic>
#include <boost/archive/portable_binary_oarchive.hpp>
#include <boost/archive/portable_binary_iarchive.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/read.hpp>
#include <boost/asio/steady_timer.hpp>
#include <boost/asio/write.hpp>
#include <boost/endian/conversion.hpp>
#include <boost/range/adaptor/sliced.hpp>
#include <boost/range/combine.hpp>
#include <boost/system/error_code.hpp>
#include <boost/thread/scoped_thread.hpp>
#include <boost/thread/thread.hpp>
#include <boost/uuid/nil_generator.hpp>
#include <boost/uuid/random_generator.hpp>
#include <boost/uuid/uuid.hpp>
#include <cstdint>
#include <cstring>
#include <functional>
#include <gtest/gtest.h>
#include <map>
#include <memory>
#include <type_traits>
2020-03-20 22:09:44 -07:00
#include "crypto/crypto.h"
#include "net/dandelionpp.h"
#include "net/error.h"
#include "net/i2p_address.h"
#include "net/net_utils_base.h"
#include "net/socks.h"
#include "net/socks_connect.h"
#include "net/parse.h"
#include "net/tor_address.h"
#include "net/zmq.h"
#include "p2p/net_peerlist_boost_serialization.h"
#include "serialization/keyvalue_serialization.h"
#include "storages/portable_storage.h"
namespace
{
static constexpr const char v2_onion[] =
"xmrto2bturnore26.onion";
static constexpr const char v3_onion[] =
"vww6ybal4bd7szmgncyruucpgfkqahzddi37ktceo3ah7ngmcopnpyyd.onion";
}
TEST(tor_address, constants)
{
static_assert(!net::tor_address::is_local(), "bad is_local() response");
static_assert(!net::tor_address::is_loopback(), "bad is_loopback() response");
static_assert(net::tor_address::get_type_id() == epee::net_utils::address_type::tor, "bad get_type_id() response");
EXPECT_FALSE(net::tor_address::is_local());
EXPECT_FALSE(net::tor_address::is_loopback());
EXPECT_EQ(epee::net_utils::address_type::tor, net::tor_address::get_type_id());
EXPECT_EQ(epee::net_utils::address_type::tor, net::tor_address::get_type_id());
}
TEST(tor_address, invalid)
{
EXPECT_TRUE(net::tor_address::make("").has_error());
EXPECT_TRUE(net::tor_address::make(":").has_error());
EXPECT_TRUE(net::tor_address::make(".onion").has_error());
EXPECT_TRUE(net::tor_address::make(".onion:").has_error());
EXPECT_TRUE(net::tor_address::make(v2_onion + 1).has_error());
EXPECT_TRUE(net::tor_address::make(v3_onion + 1).has_error());
EXPECT_TRUE(net::tor_address::make(boost::string_ref{v2_onion, sizeof(v2_onion) - 2}).has_error());
EXPECT_TRUE(net::tor_address::make(boost::string_ref{v3_onion, sizeof(v3_onion) - 2}).has_error());
EXPECT_TRUE(net::tor_address::make(std::string{v2_onion} + ":-").has_error());
EXPECT_TRUE(net::tor_address::make(std::string{v2_onion} + ":900a").has_error());
EXPECT_TRUE(net::tor_address::make(std::string{v3_onion} + ":65536").has_error());
EXPECT_TRUE(net::tor_address::make(std::string{v3_onion} + ":-1").has_error());
std::string onion{v3_onion};
onion.at(10) = 1;
EXPECT_TRUE(net::tor_address::make(onion).has_error());
}
TEST(tor_address, unblockable_types)
{
net::tor_address tor{};
ASSERT_NE(nullptr, tor.host_str());
EXPECT_STREQ("<unknown tor host>", tor.host_str());
EXPECT_STREQ("<unknown tor host>", tor.str().c_str());
EXPECT_EQ(0u, tor.port());
EXPECT_TRUE(tor.is_unknown());
EXPECT_FALSE(tor.is_local());
EXPECT_FALSE(tor.is_loopback());
EXPECT_EQ(epee::net_utils::address_type::tor, tor.get_type_id());
EXPECT_EQ(epee::net_utils::zone::tor, tor.get_zone());
tor = net::tor_address::unknown();
ASSERT_NE(nullptr, tor.host_str());
EXPECT_STREQ("<unknown tor host>", tor.host_str());
EXPECT_STREQ("<unknown tor host>", tor.str().c_str());
EXPECT_EQ(0u, tor.port());
EXPECT_TRUE(tor.is_unknown());
EXPECT_FALSE(tor.is_local());
EXPECT_FALSE(tor.is_loopback());
EXPECT_EQ(epee::net_utils::address_type::tor, tor.get_type_id());
EXPECT_EQ(epee::net_utils::zone::tor, tor.get_zone());
EXPECT_EQ(net::tor_address{}, net::tor_address::unknown());
}
TEST(tor_address, valid)
{
const auto address1 = net::tor_address::make(v3_onion);
ASSERT_TRUE(address1.has_value());
EXPECT_EQ(0u, address1->port());
EXPECT_STREQ(v3_onion, address1->host_str());
EXPECT_STREQ(v3_onion, address1->str().c_str());
EXPECT_TRUE(address1->is_blockable());
net::tor_address address2{*address1};
EXPECT_EQ(0u, address2.port());
EXPECT_STREQ(v3_onion, address2.host_str());
EXPECT_STREQ(v3_onion, address2.str().c_str());
EXPECT_TRUE(address2.is_blockable());
EXPECT_TRUE(address2.equal(*address1));
EXPECT_TRUE(address1->equal(address2));
EXPECT_TRUE(address2 == *address1);
EXPECT_TRUE(*address1 == address2);
EXPECT_FALSE(address2 != *address1);
EXPECT_FALSE(*address1 != address2);
EXPECT_TRUE(address2.is_same_host(*address1));
EXPECT_TRUE(address1->is_same_host(address2));
EXPECT_FALSE(address2.less(*address1));
EXPECT_FALSE(address1->less(address2));
address2 = MONERO_UNWRAP(net::tor_address::make(std::string{v2_onion} + ":6545"));
EXPECT_EQ(6545, address2.port());
EXPECT_STREQ(v2_onion, address2.host_str());
EXPECT_EQ(std::string{v2_onion} + ":6545", address2.str().c_str());
EXPECT_TRUE(address2.is_blockable());
EXPECT_FALSE(address2.equal(*address1));
EXPECT_FALSE(address1->equal(address2));
EXPECT_FALSE(address2 == *address1);
EXPECT_FALSE(*address1 == address2);
EXPECT_TRUE(address2 != *address1);
EXPECT_TRUE(*address1 != address2);
EXPECT_FALSE(address2.is_same_host(*address1));
EXPECT_FALSE(address1->is_same_host(address2));
EXPECT_FALSE(address2.less(*address1));
EXPECT_TRUE(address1->less(address2));
net::tor_address address3 = MONERO_UNWRAP(net::tor_address::make(std::string{v3_onion} + ":", 65535));
EXPECT_EQ(65535, address3.port());
EXPECT_STREQ(v3_onion, address3.host_str());
EXPECT_EQ(std::string{v3_onion} + ":65535", address3.str().c_str());
EXPECT_TRUE(address3.is_blockable());
EXPECT_FALSE(address3.equal(*address1));
EXPECT_FALSE(address1->equal(address3));
EXPECT_FALSE(address3 == *address1);
EXPECT_FALSE(*address1 == address3);
EXPECT_TRUE(address3 != *address1);
EXPECT_TRUE(*address1 != address3);
EXPECT_TRUE(address3.is_same_host(*address1));
EXPECT_TRUE(address1->is_same_host(address3));
EXPECT_FALSE(address3.less(*address1));
EXPECT_TRUE(address1->less(address3));
EXPECT_FALSE(address3.equal(address2));
EXPECT_FALSE(address2.equal(address3));
EXPECT_FALSE(address3 == address2);
EXPECT_FALSE(address2 == address3);
EXPECT_TRUE(address3 != address2);
EXPECT_TRUE(address2 != address3);
EXPECT_FALSE(address3.is_same_host(address2));
EXPECT_FALSE(address2.is_same_host(address3));
EXPECT_TRUE(address3.less(address2));
EXPECT_FALSE(address2.less(address3));
}
TEST(tor_address, generic_network_address)
{
const epee::net_utils::network_address tor1{MONERO_UNWRAP(net::tor_address::make(v3_onion, 8080))};
const epee::net_utils::network_address tor2{MONERO_UNWRAP(net::tor_address::make(v3_onion, 8080))};
const epee::net_utils::network_address ip{epee::net_utils::ipv4_network_address{100, 200}};
EXPECT_EQ(tor1, tor2);
EXPECT_NE(ip, tor1);
EXPECT_LT(ip, tor1);
EXPECT_STREQ(v3_onion, tor1.host_str().c_str());
EXPECT_EQ(std::string{v3_onion} + ":8080", tor1.str());
EXPECT_EQ(epee::net_utils::address_type::tor, tor1.get_type_id());
EXPECT_EQ(epee::net_utils::address_type::tor, tor2.get_type_id());
EXPECT_EQ(epee::net_utils::address_type::ipv4, ip.get_type_id());
EXPECT_EQ(epee::net_utils::zone::tor, tor1.get_zone());
EXPECT_EQ(epee::net_utils::zone::tor, tor2.get_zone());
EXPECT_EQ(epee::net_utils::zone::public_, ip.get_zone());
EXPECT_TRUE(tor1.is_blockable());
EXPECT_TRUE(tor2.is_blockable());
EXPECT_TRUE(ip.is_blockable());
}
namespace
{
struct test_command_tor
{
net::tor_address tor;
BEGIN_KV_SERIALIZE_MAP()
KV_SERIALIZE(tor);
END_KV_SERIALIZE_MAP()
};
}
TEST(tor_address, epee_serializev_v2)
{
std::string buffer{};
{
test_command_tor command{MONERO_UNWRAP(net::tor_address::make(v2_onion, 10))};
EXPECT_FALSE(command.tor.is_unknown());
EXPECT_NE(net::tor_address{}, command.tor);
EXPECT_STREQ(v2_onion, command.tor.host_str());
EXPECT_EQ(10u, command.tor.port());
epee::serialization::portable_storage stg{};
EXPECT_TRUE(command.store(stg));
EXPECT_TRUE(stg.store_to_binary(buffer));
}
test_command_tor command{};
{
EXPECT_TRUE(command.tor.is_unknown());
EXPECT_EQ(net::tor_address{}, command.tor);
EXPECT_STREQ(net::tor_address::unknown_str(), command.tor.host_str());
EXPECT_EQ(0u, command.tor.port());
epee::serialization::portable_storage stg{};
EXPECT_TRUE(stg.load_from_binary(buffer));
EXPECT_TRUE(command.load(stg));
}
EXPECT_FALSE(command.tor.is_unknown());
EXPECT_NE(net::tor_address{}, command.tor);
EXPECT_STREQ(v2_onion, command.tor.host_str());
EXPECT_EQ(10u, command.tor.port());
// make sure that exceeding max buffer doesn't destroy tor_address::_load
{
epee::serialization::portable_storage stg{};
stg.load_from_binary(buffer);
std::string host{};
ASSERT_TRUE(stg.get_value("host", host, stg.open_section("tor", nullptr, false)));
EXPECT_EQ(std::strlen(v2_onion), host.size());
host.push_back('k');
EXPECT_TRUE(stg.set_value("host", std::move(host), stg.open_section("tor", nullptr, false)));
EXPECT_TRUE(command.load(stg)); // poor error reporting from `KV_SERIALIZE`
}
EXPECT_TRUE(command.tor.is_unknown());
EXPECT_EQ(net::tor_address{}, command.tor);
EXPECT_STREQ(net::tor_address::unknown_str(), command.tor.host_str());
EXPECT_EQ(0u, command.tor.port());
}
TEST(tor_address, epee_serializev_v3)
{
std::string buffer{};
{
test_command_tor command{MONERO_UNWRAP(net::tor_address::make(v3_onion, 10))};
EXPECT_FALSE(command.tor.is_unknown());
EXPECT_NE(net::tor_address{}, command.tor);
EXPECT_STREQ(v3_onion, command.tor.host_str());
EXPECT_EQ(10u, command.tor.port());
epee::serialization::portable_storage stg{};
EXPECT_TRUE(command.store(stg));
EXPECT_TRUE(stg.store_to_binary(buffer));
}
test_command_tor command{};
{
EXPECT_TRUE(command.tor.is_unknown());
EXPECT_EQ(net::tor_address{}, command.tor);
EXPECT_STREQ(net::tor_address::unknown_str(), command.tor.host_str());
EXPECT_EQ(0u, command.tor.port());
epee::serialization::portable_storage stg{};
EXPECT_TRUE(stg.load_from_binary(buffer));
EXPECT_TRUE(command.load(stg));
}
EXPECT_FALSE(command.tor.is_unknown());
EXPECT_NE(net::tor_address{}, command.tor);
EXPECT_STREQ(v3_onion, command.tor.host_str());
EXPECT_EQ(10u, command.tor.port());
// make sure that exceeding max buffer doesn't destroy tor_address::_load
{
epee::serialization::portable_storage stg{};
stg.load_from_binary(buffer);
std::string host{};
ASSERT_TRUE(stg.get_value("host", host, stg.open_section("tor", nullptr, false)));
EXPECT_EQ(std::strlen(v3_onion), host.size());
host.push_back('k');
EXPECT_TRUE(stg.set_value("host", std::move(host), stg.open_section("tor", nullptr, false)));
EXPECT_TRUE(command.load(stg)); // poor error reporting from `KV_SERIALIZE`
}
EXPECT_TRUE(command.tor.is_unknown());
EXPECT_EQ(net::tor_address{}, command.tor);
EXPECT_STRNE(v3_onion, command.tor.host_str());
EXPECT_EQ(0u, command.tor.port());
}
TEST(tor_address, epee_serialize_unknown)
{
std::string buffer{};
{
test_command_tor command{net::tor_address::unknown()};
EXPECT_TRUE(command.tor.is_unknown());
EXPECT_EQ(net::tor_address{}, command.tor);
EXPECT_STREQ(net::tor_address::unknown_str(), command.tor.host_str());
EXPECT_EQ(0u, command.tor.port());
epee::serialization::portable_storage stg{};
EXPECT_TRUE(command.store(stg));
EXPECT_TRUE(stg.store_to_binary(buffer));
}
test_command_tor command{};
{
EXPECT_TRUE(command.tor.is_unknown());
EXPECT_EQ(net::tor_address{}, command.tor);
EXPECT_STRNE(v3_onion, command.tor.host_str());
EXPECT_EQ(0u, command.tor.port());
epee::serialization::portable_storage stg{};
EXPECT_TRUE(stg.load_from_binary(buffer));
EXPECT_TRUE(command.load(stg));
}
EXPECT_TRUE(command.tor.is_unknown());
EXPECT_EQ(net::tor_address{}, command.tor);
EXPECT_STREQ(net::tor_address::unknown_str(), command.tor.host_str());
EXPECT_EQ(0u, command.tor.port());
// make sure that exceeding max buffer doesn't destroy tor_address::_load
{
epee::serialization::portable_storage stg{};
stg.load_from_binary(buffer);
std::string host{};
ASSERT_TRUE(stg.get_value("host", host, stg.open_section("tor", nullptr, false)));
EXPECT_EQ(std::strlen(net::tor_address::unknown_str()), host.size());
host.push_back('k');
EXPECT_TRUE(stg.set_value("host", std::move(host), stg.open_section("tor", nullptr, false)));
EXPECT_TRUE(command.load(stg)); // poor error reporting from `KV_SERIALIZE`
}
EXPECT_TRUE(command.tor.is_unknown());
EXPECT_EQ(net::tor_address{}, command.tor);
EXPECT_STRNE(v3_onion, command.tor.host_str());
EXPECT_EQ(0u, command.tor.port());
}
TEST(tor_address, boost_serialize_v2)
{
std::string buffer{};
{
const net::tor_address tor = MONERO_UNWRAP(net::tor_address::make(v2_onion, 10));
EXPECT_FALSE(tor.is_unknown());
EXPECT_NE(net::tor_address{}, tor);
EXPECT_STREQ(v2_onion, tor.host_str());
EXPECT_EQ(10u, tor.port());
std::ostringstream stream{};
{
boost::archive::portable_binary_oarchive archive{stream};
archive << tor;
}
buffer = stream.str();
}
net::tor_address tor{};
{
EXPECT_TRUE(tor.is_unknown());
EXPECT_EQ(net::tor_address{}, tor);
EXPECT_STREQ(net::tor_address::unknown_str(), tor.host_str());
EXPECT_EQ(0u, tor.port());
std::istringstream stream{buffer};
boost::archive::portable_binary_iarchive archive{stream};
archive >> tor;
}
EXPECT_FALSE(tor.is_unknown());
EXPECT_NE(net::tor_address{}, tor);
EXPECT_STREQ(v2_onion, tor.host_str());
EXPECT_EQ(10u, tor.port());
}
TEST(tor_address, boost_serialize_v3)
{
std::string buffer{};
{
const net::tor_address tor = MONERO_UNWRAP(net::tor_address::make(v3_onion, 10));
EXPECT_FALSE(tor.is_unknown());
EXPECT_NE(net::tor_address{}, tor);
EXPECT_STREQ(v3_onion, tor.host_str());
EXPECT_EQ(10u, tor.port());
std::ostringstream stream{};
{
boost::archive::portable_binary_oarchive archive{stream};
archive << tor;
}
buffer = stream.str();
}
net::tor_address tor{};
{
EXPECT_TRUE(tor.is_unknown());
EXPECT_EQ(net::tor_address{}, tor);
EXPECT_STREQ(net::tor_address::unknown_str(), tor.host_str());
EXPECT_EQ(0u, tor.port());
std::istringstream stream{buffer};
boost::archive::portable_binary_iarchive archive{stream};
archive >> tor;
}
EXPECT_FALSE(tor.is_unknown());
EXPECT_NE(net::tor_address{}, tor);
EXPECT_STREQ(v3_onion, tor.host_str());
EXPECT_EQ(10u, tor.port());
}
TEST(tor_address, boost_serialize_unknown)
{
std::string buffer{};
{
const net::tor_address tor{};
EXPECT_TRUE(tor.is_unknown());
EXPECT_EQ(net::tor_address::unknown(), tor);
EXPECT_STREQ(net::tor_address::unknown_str(), tor.host_str());
EXPECT_EQ(0u, tor.port());
std::ostringstream stream{};
{
boost::archive::portable_binary_oarchive archive{stream};
archive << tor;
}
buffer = stream.str();
}
net::tor_address tor{};
{
EXPECT_TRUE(tor.is_unknown());
EXPECT_EQ(net::tor_address{}, tor);
EXPECT_STREQ(net::tor_address::unknown_str(), tor.host_str());
EXPECT_EQ(0u, tor.port());
std::istringstream stream{buffer};
boost::archive::portable_binary_iarchive archive{stream};
archive >> tor;
}
EXPECT_TRUE(tor.is_unknown());
EXPECT_EQ(net::tor_address::unknown(), tor);
EXPECT_STREQ(net::tor_address::unknown_str(), tor.host_str());
EXPECT_EQ(0u, tor.port());
}
TEST(get_network_address, onion)
{
expect<epee::net_utils::network_address> address =
net::get_network_address("onion", 0);
EXPECT_EQ(net::error::unsupported_address, address);
address = net::get_network_address(".onion", 0);
EXPECT_EQ(net::error::invalid_tor_address, address);
address = net::get_network_address(v3_onion, 1000);
ASSERT_TRUE(bool(address));
EXPECT_EQ(epee::net_utils::address_type::tor, address->get_type_id());
EXPECT_STREQ(v3_onion, address->host_str().c_str());
EXPECT_EQ(std::string{v3_onion} + ":1000", address->str());
address = net::get_network_address(std::string{v3_onion} + ":2000", 1000);
ASSERT_TRUE(bool(address));
EXPECT_EQ(epee::net_utils::address_type::tor, address->get_type_id());
EXPECT_STREQ(v3_onion, address->host_str().c_str());
EXPECT_EQ(std::string{v3_onion} + ":2000", address->str());
address = net::get_network_address(std::string{v3_onion} + ":65536", 1000);
EXPECT_EQ(net::error::invalid_port, address);
}
namespace
{
static constexpr const char b32_i2p[] =
"vww6ybal4bd7szmgncyruucpgfkqahzddi37ktceo3ah7ngmcopn.b32.i2p";
static constexpr const char b32_i2p_2[] =
"xmrto2bturnore26xmrto2bturnore26xmrto2bturnore26xmr2.b32.i2p";
}
TEST(i2p_address, constants)
{
static_assert(!net::i2p_address::is_local(), "bad is_local() response");
static_assert(!net::i2p_address::is_loopback(), "bad is_loopback() response");
static_assert(net::i2p_address::get_type_id() == epee::net_utils::address_type::i2p, "bad get_type_id() response");
EXPECT_FALSE(net::i2p_address::is_local());
EXPECT_FALSE(net::i2p_address::is_loopback());
EXPECT_EQ(epee::net_utils::address_type::i2p, net::i2p_address::get_type_id());
EXPECT_EQ(epee::net_utils::address_type::i2p, net::i2p_address::get_type_id());
}
TEST(i2p_address, invalid)
{
EXPECT_TRUE(net::i2p_address::make("").has_error());
EXPECT_TRUE(net::i2p_address::make(":").has_error());
EXPECT_TRUE(net::i2p_address::make(".b32.i2p").has_error());
EXPECT_TRUE(net::i2p_address::make(".b32.i2p:").has_error());
EXPECT_TRUE(net::i2p_address::make(b32_i2p + 1).has_error());
EXPECT_TRUE(net::i2p_address::make(boost::string_ref{b32_i2p, sizeof(b32_i2p) - 2}).has_error());
EXPECT_TRUE(net::i2p_address::make(std::string{b32_i2p} + ":65536").has_error());
EXPECT_TRUE(net::i2p_address::make(std::string{b32_i2p} + ":-1").has_error());
std::string i2p{b32_i2p};
i2p.at(10) = 1;
EXPECT_TRUE(net::i2p_address::make(i2p).has_error());
}
TEST(i2p_address, unblockable_types)
{
net::i2p_address i2p{};
ASSERT_NE(nullptr, i2p.host_str());
EXPECT_STREQ("<unknown i2p host>", i2p.host_str());
EXPECT_STREQ("<unknown i2p host>", i2p.str().c_str());
EXPECT_EQ(0u, i2p.port());
EXPECT_TRUE(i2p.is_unknown());
EXPECT_FALSE(i2p.is_local());
EXPECT_FALSE(i2p.is_loopback());
EXPECT_EQ(epee::net_utils::address_type::i2p, i2p.get_type_id());
EXPECT_EQ(epee::net_utils::zone::i2p, i2p.get_zone());
i2p = net::i2p_address::unknown();
ASSERT_NE(nullptr, i2p.host_str());
EXPECT_STREQ("<unknown i2p host>", i2p.host_str());
EXPECT_STREQ("<unknown i2p host>", i2p.str().c_str());
EXPECT_EQ(0u, i2p.port());
EXPECT_TRUE(i2p.is_unknown());
EXPECT_FALSE(i2p.is_local());
EXPECT_FALSE(i2p.is_loopback());
EXPECT_EQ(epee::net_utils::address_type::i2p, i2p.get_type_id());
EXPECT_EQ(epee::net_utils::zone::i2p, i2p.get_zone());
EXPECT_EQ(net::i2p_address{}, net::i2p_address::unknown());
}
TEST(i2p_address, valid)
{
const auto address1 = net::i2p_address::make(b32_i2p);
ASSERT_TRUE(address1.has_value());
EXPECT_EQ(0u, address1->port());
EXPECT_STREQ(b32_i2p, address1->host_str());
EXPECT_STREQ(b32_i2p, address1->str().c_str());
EXPECT_TRUE(address1->is_blockable());
net::i2p_address address2{*address1};
EXPECT_EQ(0u, address2.port());
EXPECT_STREQ(b32_i2p, address2.host_str());
EXPECT_STREQ(b32_i2p, address2.str().c_str());
EXPECT_TRUE(address2.is_blockable());
EXPECT_TRUE(address2.equal(*address1));
EXPECT_TRUE(address1->equal(address2));
EXPECT_TRUE(address2 == *address1);
EXPECT_TRUE(*address1 == address2);
EXPECT_FALSE(address2 != *address1);
EXPECT_FALSE(*address1 != address2);
EXPECT_TRUE(address2.is_same_host(*address1));
EXPECT_TRUE(address1->is_same_host(address2));
EXPECT_FALSE(address2.less(*address1));
EXPECT_FALSE(address1->less(address2));
address2 = MONERO_UNWRAP(net::i2p_address::make(std::string{b32_i2p_2} + ":6545"));
EXPECT_EQ(6545, address2.port());
EXPECT_STREQ(b32_i2p_2, address2.host_str());
EXPECT_EQ(std::string{b32_i2p_2} + ":6545", address2.str().c_str());
EXPECT_TRUE(address2.is_blockable());
EXPECT_FALSE(address2.equal(*address1));
EXPECT_FALSE(address1->equal(address2));
EXPECT_FALSE(address2 == *address1);
EXPECT_FALSE(*address1 == address2);
EXPECT_TRUE(address2 != *address1);
EXPECT_TRUE(*address1 != address2);
EXPECT_FALSE(address2.is_same_host(*address1));
EXPECT_FALSE(address1->is_same_host(address2));
EXPECT_FALSE(address2.less(*address1));
EXPECT_TRUE(address1->less(address2));
net::i2p_address address3 = MONERO_UNWRAP(net::i2p_address::make(std::string{b32_i2p} + ":", 65535));
EXPECT_EQ(65535, address3.port());
EXPECT_STREQ(b32_i2p, address3.host_str());
EXPECT_EQ(std::string{b32_i2p} + ":65535", address3.str().c_str());
EXPECT_TRUE(address3.is_blockable());
EXPECT_FALSE(address3.equal(*address1));
EXPECT_FALSE(address1->equal(address3));
EXPECT_FALSE(address3 == *address1);
EXPECT_FALSE(*address1 == address3);
EXPECT_TRUE(address3 != *address1);
EXPECT_TRUE(*address1 != address3);
EXPECT_TRUE(address3.is_same_host(*address1));
EXPECT_TRUE(address1->is_same_host(address3));
EXPECT_FALSE(address3.less(*address1));
EXPECT_TRUE(address1->less(address3));
EXPECT_FALSE(address3.equal(address2));
EXPECT_FALSE(address2.equal(address3));
EXPECT_FALSE(address3 == address2);
EXPECT_FALSE(address2 == address3);
EXPECT_TRUE(address3 != address2);
EXPECT_TRUE(address2 != address3);
EXPECT_FALSE(address3.is_same_host(address2));
EXPECT_FALSE(address2.is_same_host(address3));
EXPECT_TRUE(address3.less(address2));
EXPECT_FALSE(address2.less(address3));
}
TEST(i2p_address, generic_network_address)
{
const epee::net_utils::network_address i2p1{MONERO_UNWRAP(net::i2p_address::make(b32_i2p, 8080))};
const epee::net_utils::network_address i2p2{MONERO_UNWRAP(net::i2p_address::make(b32_i2p, 8080))};
const epee::net_utils::network_address ip{epee::net_utils::ipv4_network_address{100, 200}};
EXPECT_EQ(i2p1, i2p2);
EXPECT_NE(ip, i2p1);
EXPECT_LT(ip, i2p1);
EXPECT_STREQ(b32_i2p, i2p1.host_str().c_str());
EXPECT_EQ(std::string{b32_i2p} + ":8080", i2p1.str());
EXPECT_EQ(epee::net_utils::address_type::i2p, i2p1.get_type_id());
EXPECT_EQ(epee::net_utils::address_type::i2p, i2p2.get_type_id());
EXPECT_EQ(epee::net_utils::address_type::ipv4, ip.get_type_id());
EXPECT_EQ(epee::net_utils::zone::i2p, i2p1.get_zone());
EXPECT_EQ(epee::net_utils::zone::i2p, i2p2.get_zone());
EXPECT_EQ(epee::net_utils::zone::public_, ip.get_zone());
EXPECT_TRUE(i2p1.is_blockable());
EXPECT_TRUE(i2p2.is_blockable());
EXPECT_TRUE(ip.is_blockable());
}
namespace
{
struct test_command_i2p
{
net::i2p_address i2p;
BEGIN_KV_SERIALIZE_MAP()
KV_SERIALIZE(i2p);
END_KV_SERIALIZE_MAP()
};
}
TEST(i2p_address, epee_serializev_b32)
{
std::string buffer{};
{
test_command_i2p command{MONERO_UNWRAP(net::i2p_address::make(b32_i2p, 10))};
EXPECT_FALSE(command.i2p.is_unknown());
EXPECT_NE(net::i2p_address{}, command.i2p);
EXPECT_STREQ(b32_i2p, command.i2p.host_str());
EXPECT_EQ(10u, command.i2p.port());
epee::serialization::portable_storage stg{};
EXPECT_TRUE(command.store(stg));
EXPECT_TRUE(stg.store_to_binary(buffer));
}
test_command_i2p command{};
{
EXPECT_TRUE(command.i2p.is_unknown());
EXPECT_EQ(net::i2p_address{}, command.i2p);
EXPECT_STREQ(net::i2p_address::unknown_str(), command.i2p.host_str());
EXPECT_EQ(0u, command.i2p.port());
epee::serialization::portable_storage stg{};
EXPECT_TRUE(stg.load_from_binary(buffer));
EXPECT_TRUE(command.load(stg));
}
EXPECT_FALSE(command.i2p.is_unknown());
EXPECT_NE(net::i2p_address{}, command.i2p);
EXPECT_STREQ(b32_i2p, command.i2p.host_str());
EXPECT_EQ(10u, command.i2p.port());
// make sure that exceeding max buffer doesn't destroy i2p_address::_load
{
epee::serialization::portable_storage stg{};
stg.load_from_binary(buffer);
std::string host{};
ASSERT_TRUE(stg.get_value("host", host, stg.open_section("i2p", nullptr, false)));
EXPECT_EQ(std::strlen(b32_i2p), host.size());
host.push_back('k');
EXPECT_TRUE(stg.set_value("host", std::string{host}, stg.open_section("i2p", nullptr, false)));
EXPECT_TRUE(command.load(stg)); // poor error reporting from `KV_SERIALIZE`
}
EXPECT_TRUE(command.i2p.is_unknown());
EXPECT_EQ(net::i2p_address{}, command.i2p);
EXPECT_STRNE(b32_i2p, command.i2p.host_str());
EXPECT_EQ(0u, command.i2p.port());
}
TEST(i2p_address, epee_serialize_unknown)
{
std::string buffer{};
{
test_command_i2p command{net::i2p_address::unknown()};
EXPECT_TRUE(command.i2p.is_unknown());
EXPECT_EQ(net::i2p_address{}, command.i2p);
EXPECT_STREQ(net::i2p_address::unknown_str(), command.i2p.host_str());
EXPECT_EQ(0u, command.i2p.port());
epee::serialization::portable_storage stg{};
EXPECT_TRUE(command.store(stg));
EXPECT_TRUE(stg.store_to_binary(buffer));
}
test_command_i2p command{};
{
EXPECT_TRUE(command.i2p.is_unknown());
EXPECT_EQ(net::i2p_address{}, command.i2p);
EXPECT_STRNE(b32_i2p, command.i2p.host_str());
EXPECT_EQ(0u, command.i2p.port());
epee::serialization::portable_storage stg{};
EXPECT_TRUE(stg.load_from_binary(buffer));
EXPECT_TRUE(command.load(stg));
}
EXPECT_TRUE(command.i2p.is_unknown());
EXPECT_EQ(net::i2p_address{}, command.i2p);
EXPECT_STREQ(net::i2p_address::unknown_str(), command.i2p.host_str());
EXPECT_EQ(0u, command.i2p.port());
// make sure that exceeding max buffer doesn't destroy i2p_address::_load
{
epee::serialization::portable_storage stg{};
stg.load_from_binary(buffer);
std::string host{};
ASSERT_TRUE(stg.get_value("host", host, stg.open_section("i2p", nullptr, false)));
EXPECT_EQ(std::strlen(net::i2p_address::unknown_str()), host.size());
host.push_back('k');
EXPECT_TRUE(stg.set_value("host", std::string{host}, stg.open_section("i2p", nullptr, false)));
EXPECT_TRUE(command.load(stg)); // poor error reporting from `KV_SERIALIZE`
}
EXPECT_TRUE(command.i2p.is_unknown());
EXPECT_EQ(net::i2p_address{}, command.i2p);
EXPECT_STRNE(b32_i2p, command.i2p.host_str());
EXPECT_EQ(0u, command.i2p.port());
}
TEST(i2p_address, boost_serialize_b32)
{
std::string buffer{};
{
const net::i2p_address i2p = MONERO_UNWRAP(net::i2p_address::make(b32_i2p, 10));
EXPECT_FALSE(i2p.is_unknown());
EXPECT_NE(net::i2p_address{}, i2p);
EXPECT_STREQ(b32_i2p, i2p.host_str());
EXPECT_EQ(10u, i2p.port());
std::ostringstream stream{};
{
boost::archive::portable_binary_oarchive archive{stream};
archive << i2p;
}
buffer = stream.str();
}
net::i2p_address i2p{};
{
EXPECT_TRUE(i2p.is_unknown());
EXPECT_EQ(net::i2p_address{}, i2p);
EXPECT_STREQ(net::i2p_address::unknown_str(), i2p.host_str());
EXPECT_EQ(0u, i2p.port());
std::istringstream stream{buffer};
boost::archive::portable_binary_iarchive archive{stream};
archive >> i2p;
}
EXPECT_FALSE(i2p.is_unknown());
EXPECT_NE(net::i2p_address{}, i2p);
EXPECT_STREQ(b32_i2p, i2p.host_str());
EXPECT_EQ(10u, i2p.port());
}
TEST(i2p_address, boost_serialize_unknown)
{
std::string buffer{};
{
const net::i2p_address i2p{};
EXPECT_TRUE(i2p.is_unknown());
EXPECT_EQ(net::i2p_address::unknown(), i2p);
EXPECT_STREQ(net::i2p_address::unknown_str(), i2p.host_str());
EXPECT_EQ(0u, i2p.port());
std::ostringstream stream{};
{
boost::archive::portable_binary_oarchive archive{stream};
archive << i2p;
}
buffer = stream.str();
}
net::i2p_address i2p{};
{
EXPECT_TRUE(i2p.is_unknown());
EXPECT_EQ(net::i2p_address{}, i2p);
EXPECT_STREQ(net::i2p_address::unknown_str(), i2p.host_str());
EXPECT_EQ(0u, i2p.port());
std::istringstream stream{buffer};
boost::archive::portable_binary_iarchive archive{stream};
archive >> i2p;
}
EXPECT_TRUE(i2p.is_unknown());
EXPECT_EQ(net::i2p_address::unknown(), i2p);
EXPECT_STREQ(net::i2p_address::unknown_str(), i2p.host_str());
EXPECT_EQ(0u, i2p.port());
}
TEST(get_network_address, i2p)
{
expect<epee::net_utils::network_address> address =
net::get_network_address("i2p", 0);
EXPECT_EQ(net::error::unsupported_address, address);
address = net::get_network_address(".b32.i2p", 0);
EXPECT_EQ(net::error::invalid_i2p_address, address);
address = net::get_network_address(b32_i2p, 1000);
ASSERT_TRUE(bool(address));
EXPECT_EQ(epee::net_utils::address_type::i2p, address->get_type_id());
EXPECT_STREQ(b32_i2p, address->host_str().c_str());
EXPECT_EQ(std::string{b32_i2p} + ":1000", address->str());
address = net::get_network_address(std::string{b32_i2p} + ":2000", 1000);
ASSERT_TRUE(bool(address));
EXPECT_EQ(epee::net_utils::address_type::i2p, address->get_type_id());
EXPECT_STREQ(b32_i2p, address->host_str().c_str());
EXPECT_EQ(std::string{b32_i2p} + ":2000", address->str());
address = net::get_network_address(std::string{b32_i2p} + ":65536", 1000);
EXPECT_EQ(net::error::invalid_port, address);
}
TEST(get_network_address, ipv4)
{
expect<epee::net_utils::network_address> address =
net::get_network_address("0.0.0.", 0);
EXPECT_EQ(net::error::unsupported_address, address);
address = net::get_network_address("0.0.0.257", 0);
EXPECT_EQ(net::error::unsupported_address, address);
address = net::get_network_address("0.0.0.254", 1000);
ASSERT_TRUE(bool(address));
EXPECT_EQ(epee::net_utils::address_type::ipv4, address->get_type_id());
EXPECT_STREQ("0.0.0.254", address->host_str().c_str());
EXPECT_STREQ("0.0.0.254:1000", address->str().c_str());
address = net::get_network_address("23.0.0.254:2000", 1000);
ASSERT_TRUE(bool(address));
EXPECT_EQ(epee::net_utils::address_type::ipv4, address->get_type_id());
EXPECT_STREQ("23.0.0.254", address->host_str().c_str());
EXPECT_STREQ("23.0.0.254:2000", address->str().c_str());
}
2019-03-29 10:47:53 +00:00
TEST(get_network_address, ipv4subnet)
{
expect<epee::net_utils::ipv4_network_subnet> address = net::get_ipv4_subnet_address("0.0.0.0", true);
EXPECT_STREQ("0.0.0.0/32", address->str().c_str());
address = net::get_ipv4_subnet_address("0.0.0.0");
EXPECT_TRUE(!address);
address = net::get_ipv4_subnet_address("0.0.0.0/32");
EXPECT_STREQ("0.0.0.0/32", address->str().c_str());
address = net::get_ipv4_subnet_address("0.0.0.0/0");
EXPECT_STREQ("0.0.0.0/0", address->str().c_str());
address = net::get_ipv4_subnet_address("12.34.56.78/16");
EXPECT_STREQ("12.34.0.0/16", address->str().c_str());
}
namespace
{
using stream_type = boost::asio::ip::tcp;
struct io_thread
{
boost::asio::io_service io_service;
boost::asio::io_service::work work;
stream_type::socket server;
stream_type::acceptor acceptor;
boost::thread io;
std::atomic<bool> connected;
io_thread()
: io_service(),
work(io_service),
server(io_service),
acceptor(io_service),
io([this] () { try { this->io_service.run(); } catch (const std::exception& e) { MERROR(e.what()); }}),
connected(false)
{
acceptor.open(boost::asio::ip::tcp::v4());
acceptor.bind(stream_type::endpoint{boost::asio::ip::address_v4::loopback(), 0});
acceptor.listen();
acceptor.async_accept(server, [this] (boost::system::error_code error) {
this->connected = true;
if (error)
throw boost::system::system_error{error};
});
}
~io_thread() noexcept
{
io_service.stop();
if (io.joinable())
io.join();
}
};
struct checked_client
{
std::atomic<bool>* called_;
bool expected_;
void operator()(boost::system::error_code error, net::socks::client::stream_type::socket&&) const
{
EXPECT_EQ(expected_, bool(error)) << "Socks server: " << error.message();
ASSERT_TRUE(called_ != nullptr);
(*called_) = true;
}
};
}
TEST(socks_client, unsupported_command)
{
boost::asio::io_service io_service{};
stream_type::socket client{io_service};
auto test_client = net::socks::make_connect_client(
std::move(client), net::socks::version::v4, std::bind( [] {} )
);
ASSERT_TRUE(bool(test_client));
EXPECT_TRUE(test_client->buffer().empty());
EXPECT_FALSE(test_client->set_connect_command("example.com", 8080));
EXPECT_TRUE(test_client->buffer().empty());
EXPECT_FALSE(test_client->set_resolve_command("example.com"));
EXPECT_TRUE(test_client->buffer().empty());
}
TEST(socks_client, no_command)
{
boost::asio::io_service io_service{};
stream_type::socket client{io_service};
auto test_client = net::socks::make_connect_client(
std::move(client), net::socks::version::v4a, std::bind( [] {} )
);
ASSERT_TRUE(bool(test_client));
EXPECT_FALSE(net::socks::client::send(std::move(test_client)));
}
TEST(socks_client, connect_command)
{
io_thread io{};
stream_type::socket client{io.io_service};
std::atomic<bool> called{false};
auto test_client = net::socks::make_connect_client(
std::move(client), net::socks::version::v4a, checked_client{std::addressof(called), false}
);
ASSERT_TRUE(bool(test_client));
ASSERT_TRUE(test_client->set_connect_command("example.com", 8080));
EXPECT_FALSE(test_client->buffer().empty());
ASSERT_TRUE(net::socks::client::connect_and_send(std::move(test_client), io.acceptor.local_endpoint()));
while (!io.connected)
ASSERT_FALSE(called);
const std::uint8_t expected_bytes[] = {
4, 1, 0x1f, 0x90, 0x00, 0x00, 0x00, 0x01, 0x00,
'e', 'x', 'a', 'm', 'p', 'l', 'e', '.', 'c', 'o', 'm', 0x00
};
std::uint8_t actual_bytes[sizeof(expected_bytes)];
boost::asio::read(io.server, boost::asio::buffer(actual_bytes));
EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0);
const std::uint8_t reply_bytes[] = {0, 90, 0, 0, 0, 0, 0, 0};
boost::asio::write(io.server, boost::asio::buffer(reply_bytes));
// yikes!
while (!called);
}
TEST(socks_client, connect_command_failed)
{
io_thread io{};
stream_type::socket client{io.io_service};
std::atomic<bool> called{false};
auto test_client = net::socks::make_connect_client(
std::move(client), net::socks::version::v4, checked_client{std::addressof(called), true}
);
ASSERT_TRUE(bool(test_client));
ASSERT_TRUE(
test_client->set_connect_command(
epee::net_utils::ipv4_network_address{boost::endian::native_to_big(std::uint32_t(5000)), 3000}
)
);
EXPECT_FALSE(test_client->buffer().empty());
ASSERT_TRUE(net::socks::client::connect_and_send(std::move(test_client), io.acceptor.local_endpoint()));
while (!io.connected)
ASSERT_FALSE(called);
const std::uint8_t expected_bytes[] = {
4, 1, 0x0b, 0xb8, 0x00, 0x00, 0x13, 0x88, 0x00
};
std::uint8_t actual_bytes[sizeof(expected_bytes)];
boost::asio::read(io.server, boost::asio::buffer(actual_bytes));
EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0);
const std::uint8_t reply_bytes[] = {0, 91, 0, 0, 0, 0, 0, 0};
boost::asio::write(io.server, boost::asio::buffer(reply_bytes));
// yikes!
while (!called);
}
TEST(socks_client, resolve_command)
{
static std::uint8_t reply_bytes[] = {0, 90, 0, 0, 0xff, 0, 0xad, 0};
struct resolve_client : net::socks::client
{
std::atomic<unsigned> called_;
bool expected_;
resolve_client(stream_type::socket&& proxy)
: net::socks::client(std::move(proxy), net::socks::version::v4a_tor)
, called_(0)
, expected_(false)
{};
virtual void done(boost::system::error_code error, std::shared_ptr<client> self) override
{
EXPECT_EQ(this, self.get());
EXPECT_EQ(expected_, bool(error)) << "Resolve failure: " << error.message();
if (!error)
{
ASSERT_EQ(sizeof(reply_bytes), buffer().size());
EXPECT_EQ(0u, std::memcmp(buffer().data(), reply_bytes, sizeof(reply_bytes)));
}
++called_;
}
};
io_thread io{};
stream_type::socket client{io.io_service};
auto test_client = std::make_shared<resolve_client>(std::move(client));
ASSERT_TRUE(bool(test_client));
ASSERT_TRUE(test_client->set_resolve_command("example.com"));
EXPECT_FALSE(test_client->buffer().empty());
ASSERT_TRUE(net::socks::client::connect_and_send(test_client, io.acceptor.local_endpoint()));
while (!io.connected)
ASSERT_EQ(0u, test_client->called_);
const std::uint8_t expected_bytes[] = {
4, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
'e', 'x', 'a', 'm', 'p', 'l', 'e', '.', 'c', 'o', 'm', 0x00
};
std::uint8_t actual_bytes[sizeof(expected_bytes)];
boost::asio::read(io.server, boost::asio::buffer(actual_bytes));
EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0);
boost::asio::write(io.server, boost::asio::buffer(reply_bytes));
// yikes!
while (test_client->called_ == 0);
test_client->expected_ = true;
ASSERT_TRUE(test_client->set_resolve_command("example.com"));
EXPECT_FALSE(test_client->buffer().empty());
ASSERT_TRUE(net::socks::client::send(test_client));
boost::asio::read(io.server, boost::asio::buffer(actual_bytes));
EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0);
reply_bytes[1] = 91;
boost::asio::write(io.server, boost::asio::buffer(reply_bytes));
// yikes!
while (test_client->called_ == 1);
}
TEST(socks_connector, host)
{
io_thread io{};
boost::asio::steady_timer timeout{io.io_service};
timeout.expires_from_now(std::chrono::seconds{5});
boost::unique_future<boost::asio::ip::tcp::socket> sock =
net::socks::connector{io.acceptor.local_endpoint()}("example.com", "8080", timeout);
while (!io.connected)
ASSERT_FALSE(sock.is_ready());
const std::uint8_t expected_bytes[] = {
4, 1, 0x1f, 0x90, 0x00, 0x00, 0x00, 0x01, 0x00,
'e', 'x', 'a', 'm', 'p', 'l', 'e', '.', 'c', 'o', 'm', 0x00
};
std::uint8_t actual_bytes[sizeof(expected_bytes)];
boost::asio::read(io.server, boost::asio::buffer(actual_bytes));
EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0);
const std::uint8_t reply_bytes[] = {0, 90, 0, 0, 0, 0, 0, 0};
boost::asio::write(io.server, boost::asio::buffer(reply_bytes));
ASSERT_EQ(boost::future_status::ready, sock.wait_for(boost::chrono::seconds{3}));
EXPECT_TRUE(sock.get().is_open());
}
TEST(socks_connector, ipv4)
{
io_thread io{};
boost::asio::steady_timer timeout{io.io_service};
timeout.expires_from_now(std::chrono::seconds{5});
boost::unique_future<boost::asio::ip::tcp::socket> sock =
net::socks::connector{io.acceptor.local_endpoint()}("250.88.125.99", "8080", timeout);
while (!io.connected)
ASSERT_FALSE(sock.is_ready());
const std::uint8_t expected_bytes[] = {
4, 1, 0x1f, 0x90, 0xfa, 0x58, 0x7d, 0x63, 0x00
};
std::uint8_t actual_bytes[sizeof(expected_bytes)];
boost::asio::read(io.server, boost::asio::buffer(actual_bytes));
EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0);
const std::uint8_t reply_bytes[] = {0, 90, 0, 0, 0, 0, 0, 0};
boost::asio::write(io.server, boost::asio::buffer(reply_bytes));
ASSERT_EQ(boost::future_status::ready, sock.wait_for(boost::chrono::seconds{3}));
EXPECT_TRUE(sock.get().is_open());
}
TEST(socks_connector, error)
{
io_thread io{};
boost::asio::steady_timer timeout{io.io_service};
timeout.expires_from_now(std::chrono::seconds{5});
boost::unique_future<boost::asio::ip::tcp::socket> sock =
net::socks::connector{io.acceptor.local_endpoint()}("250.88.125.99", "8080", timeout);
while (!io.connected)
ASSERT_FALSE(sock.is_ready());
const std::uint8_t expected_bytes[] = {
4, 1, 0x1f, 0x90, 0xfa, 0x58, 0x7d, 0x63, 0x00
};
std::uint8_t actual_bytes[sizeof(expected_bytes)];
boost::asio::read(io.server, boost::asio::buffer(actual_bytes));
EXPECT_TRUE(std::memcmp(expected_bytes, actual_bytes, sizeof(actual_bytes)) == 0);
const std::uint8_t reply_bytes[] = {0, 91, 0, 0, 0, 0, 0, 0};
boost::asio::write(io.server, boost::asio::buffer(reply_bytes));
ASSERT_EQ(boost::future_status::ready, sock.wait_for(boost::chrono::seconds{3}));
EXPECT_THROW(sock.get().is_open(), boost::system::system_error);
}
TEST(socks_connector, timeout)
{
io_thread io{};
boost::asio::steady_timer timeout{io.io_service};
timeout.expires_from_now(std::chrono::milliseconds{10});
boost::unique_future<boost::asio::ip::tcp::socket> sock =
net::socks::connector{io.acceptor.local_endpoint()}("250.88.125.99", "8080", timeout);
ASSERT_EQ(boost::future_status::ready, sock.wait_for(boost::chrono::seconds{3}));
EXPECT_THROW(sock.get().is_open(), boost::system::system_error);
}
TEST(dandelionpp_map, traits)
{
EXPECT_TRUE(std::is_default_constructible<net::dandelionpp::connection_map>());
EXPECT_TRUE(std::is_move_constructible<net::dandelionpp::connection_map>());
EXPECT_TRUE(std::is_move_assignable<net::dandelionpp::connection_map>());
EXPECT_FALSE(std::is_copy_constructible<net::dandelionpp::connection_map>());
EXPECT_FALSE(std::is_copy_assignable<net::dandelionpp::connection_map>());
}
TEST(dandelionpp_map, empty)
{
const net::dandelionpp::connection_map mapper{};
EXPECT_EQ(mapper.begin(), mapper.end());
EXPECT_EQ(0u, mapper.size());
const net::dandelionpp::connection_map cloned = mapper.clone();
EXPECT_EQ(cloned.begin(), cloned.end());
EXPECT_EQ(0u, cloned.size());
}
TEST(dandelionpp_map, zero_stems)
{
std::vector<boost::uuids::uuid> connections{6};
2019-10-11 01:15:00 +00:00
for (auto &c: connections)
c = boost::uuids::random_generator{}();
net::dandelionpp::connection_map mapper{connections, 0};
EXPECT_EQ(mapper.begin(), mapper.end());
EXPECT_EQ(0u, mapper.size());
for (const boost::uuids::uuid& connection : connections)
EXPECT_TRUE(mapper.get_stem(connection).is_nil());
EXPECT_FALSE(mapper.update(connections));
EXPECT_EQ(mapper.begin(), mapper.end());
EXPECT_EQ(0u, mapper.size());
for (const boost::uuids::uuid& connection : connections)
EXPECT_TRUE(mapper.get_stem(connection).is_nil());
const net::dandelionpp::connection_map cloned = mapper.clone();
EXPECT_EQ(cloned.end(), cloned.begin());
EXPECT_EQ(0u, cloned.size());
}
TEST(dandelionpp_map, dropped_connection)
{
std::vector<boost::uuids::uuid> connections{6};
2019-10-11 01:15:00 +00:00
for (auto &c: connections)
c = boost::uuids::random_generator{}();
std::sort(connections.begin(), connections.end());
// select 3 of 6 outgoing connections
net::dandelionpp::connection_map mapper{connections, 3};
EXPECT_EQ(3u, mapper.size());
EXPECT_EQ(3, mapper.end() - mapper.begin());
{
std::set<boost::uuids::uuid> used;
for (const boost::uuids::uuid& connection : mapper)
{
EXPECT_TRUE(used.insert(connection).second);
EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection));
}
}
{
const net::dandelionpp::connection_map cloned = mapper.clone();
EXPECT_EQ(3u, cloned.size());
ASSERT_EQ(mapper.end() - mapper.begin(), cloned.end() - cloned.begin());
for (auto elem : boost::combine(mapper, cloned))
EXPECT_EQ(boost::get<0>(elem), boost::get<1>(elem));
}
EXPECT_FALSE(mapper.update(connections));
EXPECT_EQ(3u, mapper.size());
ASSERT_EQ(3, mapper.end() - mapper.begin());
{
std::set<boost::uuids::uuid> used;
for (const boost::uuids::uuid& connection : mapper)
{
EXPECT_FALSE(connection.is_nil());
EXPECT_TRUE(used.insert(connection).second);
EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection));
}
}
std::map<boost::uuids::uuid, boost::uuids::uuid> mapping;
std::vector<boost::uuids::uuid> in_connections{9};
2019-10-11 01:15:00 +00:00
for (auto &c: in_connections)
c = boost::uuids::random_generator{}();
{
std::map<boost::uuids::uuid, std::size_t> used;
std::multimap<boost::uuids::uuid, boost::uuids::uuid> inverse_mapping;
for (const boost::uuids::uuid& connection : in_connections)
{
const boost::uuids::uuid out = mapper.get_stem(connection);
EXPECT_FALSE(out.is_nil());
EXPECT_TRUE(mapping.emplace(connection, out).second);
inverse_mapping.emplace(out, connection);
used[out]++;
}
EXPECT_EQ(3u, used.size());
for (const std::pair<boost::uuids::uuid, std::size_t>& entry : used)
EXPECT_EQ(3u, entry.second);
for (const boost::uuids::uuid& connection : in_connections)
EXPECT_EQ(mapping[connection], mapper.get_stem(connection));
// drop 1 connection, and select replacement from 1 of unused 3.
const boost::uuids::uuid lost_connection = *(++mapper.begin());
const auto elem = std::lower_bound(connections.begin(), connections.end(), lost_connection);
ASSERT_NE(connections.end(), elem);
ASSERT_EQ(lost_connection, *elem);
connections.erase(elem);
EXPECT_TRUE(mapper.update(connections));
EXPECT_EQ(3u, mapper.size());
ASSERT_EQ(3, mapper.end() - mapper.begin());
for (const boost::uuids::uuid& connection : mapper)
{
EXPECT_FALSE(connection.is_nil());
EXPECT_NE(lost_connection, connection);
}
const boost::uuids::uuid newly_mapped = *(++mapper.begin());
EXPECT_FALSE(newly_mapped.is_nil());
EXPECT_NE(lost_connection, newly_mapped);
for (auto elems = inverse_mapping.equal_range(lost_connection); elems.first != elems.second; ++elems.first)
mapping[elems.first->second] = newly_mapped;
}
{
const net::dandelionpp::connection_map cloned = mapper.clone();
EXPECT_EQ(3u, cloned.size());
ASSERT_EQ(mapper.end() - mapper.begin(), cloned.end() - cloned.begin());
for (auto elem : boost::combine(mapper, cloned))
EXPECT_EQ(boost::get<0>(elem), boost::get<1>(elem));
}
// mappings should remain evenly distributed amongst 2, with 3 sitting in waiting
{
std::set<boost::uuids::uuid> used;
for (const boost::uuids::uuid& connection : mapper)
{
EXPECT_FALSE(connection.is_nil());
EXPECT_TRUE(used.insert(connection).second);
EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection));
}
}
{
std::map<boost::uuids::uuid, std::size_t> used;
for (const boost::uuids::uuid& connection : in_connections)
{
const boost::uuids::uuid& out = mapper.get_stem(connection);
EXPECT_FALSE(out.is_nil());
EXPECT_EQ(mapping[connection], out);
used[out]++;
}
EXPECT_EQ(3u, used.size());
for (const std::pair<boost::uuids::uuid, std::size_t>& entry : used)
EXPECT_EQ(3u, entry.second);
}
{
const net::dandelionpp::connection_map cloned = mapper.clone();
EXPECT_EQ(3u, cloned.size());
ASSERT_EQ(mapper.end() - mapper.begin(), cloned.end() - cloned.begin());
for (auto elem : boost::combine(mapper, cloned))
EXPECT_EQ(boost::get<0>(elem), boost::get<1>(elem));
}
}
TEST(dandelionpp_map, dropped_connection_remapped)
{
boost::uuids::random_generator random_uuid{};
std::vector<boost::uuids::uuid> connections{3};
for (auto &e: connections)
e = random_uuid();
std::sort(connections.begin(), connections.end());
// select 3 of 3 outgoing connections
net::dandelionpp::connection_map mapper{connections, 3};
EXPECT_EQ(3u, mapper.size());
EXPECT_EQ(3, mapper.end() - mapper.begin());
{
std::set<boost::uuids::uuid> used;
for (const boost::uuids::uuid& connection : mapper)
{
EXPECT_FALSE(connection.is_nil());
EXPECT_TRUE(used.insert(connection).second);
EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection));
}
}
EXPECT_FALSE(mapper.update(connections));
EXPECT_EQ(3u, mapper.size());
ASSERT_EQ(3, mapper.end() - mapper.begin());
{
std::set<boost::uuids::uuid> used;
for (const boost::uuids::uuid& connection : mapper)
{
EXPECT_FALSE(connection.is_nil());
EXPECT_TRUE(used.insert(connection).second);
EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection));
}
}
std::map<boost::uuids::uuid, boost::uuids::uuid> mapping;
std::vector<boost::uuids::uuid> in_connections{9};
for (auto &e: in_connections)
e = random_uuid();
{
std::map<boost::uuids::uuid, std::size_t> used;
std::multimap<boost::uuids::uuid, boost::uuids::uuid> inverse_mapping;
for (const boost::uuids::uuid& connection : in_connections)
{
const boost::uuids::uuid out = mapper.get_stem(connection);
EXPECT_FALSE(out.is_nil());
EXPECT_TRUE(mapping.emplace(connection, out).second);
inverse_mapping.emplace(out, connection);
used[out]++;
}
EXPECT_EQ(3u, used.size());
for (const std::pair<boost::uuids::uuid, std::size_t>& entry : used)
EXPECT_EQ(3u, entry.second);
for (const boost::uuids::uuid& connection : in_connections)
EXPECT_EQ(mapping[connection], mapper.get_stem(connection));
// drop 1 connection leaving "hole"
const boost::uuids::uuid lost_connection = *(++mapper.begin());
const auto elem = std::lower_bound(connections.begin(), connections.end(), lost_connection);
ASSERT_NE(connections.end(), elem);
ASSERT_EQ(lost_connection, *elem);
connections.erase(elem);
EXPECT_TRUE(mapper.update(connections));
EXPECT_EQ(2u, mapper.size());
EXPECT_EQ(3, mapper.end() - mapper.begin());
for (auto elems = inverse_mapping.equal_range(lost_connection); elems.first != elems.second; ++elems.first)
mapping[elems.first->second] = boost::uuids::nil_uuid();
}
// remap 3 connections and map 1 new connection to 2 remaining out connections
in_connections.resize(10);
in_connections[9] = random_uuid();
{
std::map<boost::uuids::uuid, std::size_t> used;
for (const boost::uuids::uuid& connection : in_connections)
{
const boost::uuids::uuid& out = mapper.get_stem(connection);
EXPECT_FALSE(out.is_nil());
used[out]++;
boost::uuids::uuid& expected = mapping[connection];
if (!expected.is_nil())
EXPECT_EQ(expected, out);
else
expected = out;
}
EXPECT_EQ(2u, used.size());
for (const std::pair<boost::uuids::uuid, std::size_t>& entry : used)
EXPECT_EQ(5u, entry.second);
}
// select 3 of 3 connections but do not remap existing links
connections.resize(3);
connections[2] = random_uuid();
EXPECT_TRUE(mapper.update(connections));
EXPECT_EQ(3u, mapper.size());
EXPECT_EQ(3, mapper.end() - mapper.begin());
{
std::map<boost::uuids::uuid, std::size_t> used;
for (const boost::uuids::uuid& connection : in_connections)
{
const boost::uuids::uuid& out = mapper.get_stem(connection);
EXPECT_FALSE(out.is_nil());
used[out]++;
EXPECT_EQ(mapping[connection], out);
}
EXPECT_EQ(2u, used.size());
for (const std::pair<boost::uuids::uuid, std::size_t>& entry : used)
EXPECT_EQ(5u, entry.second);
}
// map 8 new incoming connections across 3 outgoing links
in_connections.resize(18);
for (size_t i = 10; i < in_connections.size(); ++i)
in_connections[i] = random_uuid();
{
std::map<boost::uuids::uuid, std::size_t> used;
for (const boost::uuids::uuid& connection : in_connections)
{
const boost::uuids::uuid& out = mapper.get_stem(connection);
EXPECT_FALSE(out.is_nil());
used[out]++;
boost::uuids::uuid& expected = mapping[connection];
if (!expected.is_nil())
EXPECT_EQ(expected, out);
else
expected = out;
}
EXPECT_EQ(3u, used.size());
for (const std::pair<boost::uuids::uuid, std::size_t>& entry : used)
EXPECT_EQ(6u, entry.second);
}
}
TEST(dandelionpp_map, dropped_all_connections)
{
boost::uuids::random_generator random_uuid{};
std::vector<boost::uuids::uuid> connections{8};
for (auto &e: connections)
e = random_uuid();
std::sort(connections.begin(), connections.end());
// select 3 of 8 outgoing connections
net::dandelionpp::connection_map mapper{connections, 3};
EXPECT_EQ(3u, mapper.size());
EXPECT_EQ(3, mapper.end() - mapper.begin());
{
std::set<boost::uuids::uuid> used;
for (const boost::uuids::uuid& connection : mapper)
{
EXPECT_FALSE(connection.is_nil());
EXPECT_TRUE(used.insert(connection).second);
EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection));
}
}
EXPECT_FALSE(mapper.update(connections));
EXPECT_EQ(3u, mapper.size());
ASSERT_EQ(3, mapper.end() - mapper.begin());
{
std::set<boost::uuids::uuid> used;
for (const boost::uuids::uuid& connection : mapper)
{
EXPECT_FALSE(connection.is_nil());
EXPECT_TRUE(used.insert(connection).second);
EXPECT_TRUE(std::binary_search(connections.begin(), connections.end(), connection));
}
}
std::vector<boost::uuids::uuid> in_connections{9};
for (auto &e: in_connections)
e = random_uuid();
{
std::map<boost::uuids::uuid, std::size_t> used;
std::map<boost::uuids::uuid, boost::uuids::uuid> mapping;
for (const boost::uuids::uuid& connection : in_connections)
{
const boost::uuids::uuid out = mapper.get_stem(connection);
EXPECT_FALSE(out.is_nil());
EXPECT_TRUE(mapping.emplace(connection, out).second);
used[out]++;
}
EXPECT_EQ(3u, used.size());
for (const std::pair<boost::uuids::uuid, std::size_t>& entry : used)
EXPECT_EQ(3u, entry.second);
for (const boost::uuids::uuid& connection : in_connections)
EXPECT_EQ(mapping[connection], mapper.get_stem(connection));
// drop all connections
connections.clear();
EXPECT_TRUE(mapper.update(connections));
EXPECT_EQ(0u, mapper.size());
EXPECT_EQ(3, mapper.end() - mapper.begin());
}
// remap 7 connections to nothing
for (const boost::uuids::uuid& connection : boost::adaptors::slice(in_connections, 0, 7))
EXPECT_TRUE(mapper.get_stem(connection).is_nil());
// select 3 of 30 connections, only 7 should be remapped to new indexes (but all to new uuids)
connections.resize(30);
for (auto &e: connections)
e = random_uuid();
EXPECT_TRUE(mapper.update(connections));
{
std::map<boost::uuids::uuid, std::size_t> used;
for (const boost::uuids::uuid& connection : in_connections)
{
const boost::uuids::uuid& out = mapper.get_stem(connection);
EXPECT_FALSE(out.is_nil());
used[out]++;
}
EXPECT_EQ(3u, used.size());
for (const std::pair<boost::uuids::uuid, std::size_t>& entry : used)
EXPECT_EQ(3u, entry.second);
}
}
TEST(zmq, error_codes)
{
EXPECT_EQ(
std::addressof(net::zmq::error_category()),
std::addressof(net::zmq::make_error_code(0).category())
);
EXPECT_EQ(
std::make_error_condition(std::errc::not_a_socket),
net::zmq::make_error_code(ENOTSOCK)
);
EXPECT_TRUE(
[]() -> expect<void>
{
MONERO_ZMQ_CHECK(zmq_msg_send(nullptr, nullptr, 0));
return success();
}().matches(std::errc::not_a_socket)
);
bool thrown = false;
try
{
MONERO_ZMQ_THROW("stuff");
}
catch (const std::system_error& e)
{
thrown = true;
EXPECT_EQ(std::make_error_condition(std::errc::not_a_socket), e.code());
}
EXPECT_TRUE(thrown);
}
TEST(zmq, read_write)
{
net::zmq::context context{zmq_init(1)};
ASSERT_NE(nullptr, context);
net::zmq::socket send_socket{zmq_socket(context.get(), ZMQ_REQ)};
net::zmq::socket recv_socket{zmq_socket(context.get(), ZMQ_REP)};
ASSERT_NE(nullptr, send_socket);
ASSERT_NE(nullptr, recv_socket);
ASSERT_EQ(0u, zmq_bind(recv_socket.get(), "inproc://testing"));
ASSERT_EQ(0u, zmq_connect(send_socket.get(), "inproc://testing"));
std::string message;
message.resize(1024);
crypto::rand(message.size(), reinterpret_cast<std::uint8_t*>(std::addressof(message[0])));
ASSERT_TRUE(bool(net::zmq::send(epee::strspan<std::uint8_t>(message), send_socket.get())));
const expect<std::string> received = net::zmq::receive(recv_socket.get());
ASSERT_TRUE(bool(received));
EXPECT_EQ(message, *received);
}
TEST(zmq, read_write_multipart)
{
net::zmq::context context{zmq_init(1)};
ASSERT_NE(nullptr, context);
net::zmq::socket send_socket{zmq_socket(context.get(), ZMQ_REQ)};
net::zmq::socket recv_socket{zmq_socket(context.get(), ZMQ_REP)};
ASSERT_NE(nullptr, send_socket);
ASSERT_NE(nullptr, recv_socket);
ASSERT_EQ(0u, zmq_bind(recv_socket.get(), "inproc://testing"));
ASSERT_EQ(0u, zmq_connect(send_socket.get(), "inproc://testing"));
std::string message;
message.resize(999);
crypto::rand(message.size(), reinterpret_cast<std::uint8_t*>(std::addressof(message[0])));
for (unsigned i = 0; i < 3; ++i)
{
const expect<std::string> received = net::zmq::receive(recv_socket.get(), ZMQ_DONTWAIT);
ASSERT_FALSE(bool(received));
EXPECT_EQ(net::zmq::make_error_code(EAGAIN), received.error());
const epee::span<const std::uint8_t> bytes{
reinterpret_cast<const std::uint8_t*>(std::addressof(message[0])) + (i * 333), 333
};
ASSERT_TRUE(bool(net::zmq::send(bytes, send_socket.get(), (i == 2 ? 0 : ZMQ_SNDMORE))));
}
const expect<std::string> received = net::zmq::receive(recv_socket.get(), ZMQ_DONTWAIT);
ASSERT_TRUE(bool(received));
EXPECT_EQ(message, *received);
}
TEST(zmq, read_write_termination)
{
net::zmq::context context{zmq_init(1)};
ASSERT_NE(nullptr, context);
// must be declared before sockets and after context
boost::scoped_thread<> thread{};
net::zmq::socket send_socket{zmq_socket(context.get(), ZMQ_REQ)};
net::zmq::socket recv_socket{zmq_socket(context.get(), ZMQ_REP)};
ASSERT_NE(nullptr, send_socket);
ASSERT_NE(nullptr, recv_socket);
ASSERT_EQ(0u, zmq_bind(recv_socket.get(), "inproc://testing"));
ASSERT_EQ(0u, zmq_connect(send_socket.get(), "inproc://testing"));
std::string message;
message.resize(1024);
crypto::rand(message.size(), reinterpret_cast<std::uint8_t*>(std::addressof(message[0])));
ASSERT_TRUE(bool(net::zmq::send(epee::strspan<std::uint8_t>(message), send_socket.get(), ZMQ_SNDMORE)));
expect<std::string> received = net::zmq::receive(recv_socket.get(), ZMQ_DONTWAIT);
ASSERT_FALSE(bool(received));
EXPECT_EQ(net::zmq::make_error_code(EAGAIN), received.error());
thread = boost::scoped_thread<>{
boost::thread{
[&context] () { context.reset(); }
}
};
received = net::zmq::receive(recv_socket.get());
ASSERT_FALSE(bool(received));
EXPECT_EQ(net::zmq::make_error_code(ETERM), received.error());
}