wownero/src/crypto/groestl.c

361 lines
11 KiB
C
Raw Normal View History

2014-03-03 22:07:58 +00:00
/* hash.c April 2012
* Groestl ANSI C code optimised for 32-bit machines
* Author: Thomas Krinninger
*
* This work is based on the implementation of
* Soeren S. Thomsen and Krystian Matusiewicz
*
*
*/
#include "groestl.h"
#include "groestl_tables.h"
#define P_TYPE 0
#define Q_TYPE 1
const uint8_t shift_Values[2][8] = {{0,1,2,3,4,5,6,7},{1,3,5,7,0,2,4,6}};
const uint8_t indices_cyclic[15] = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6};
#define ROTATE_COLUMN_DOWN(v1, v2, amount_bytes, temp_var) {temp_var = (v1<<(8*amount_bytes))|(v2>>(8*(4-amount_bytes))); \
v2 = (v2<<(8*amount_bytes))|(v1>>(8*(4-amount_bytes))); \
v1 = temp_var;}
#define COLUMN(x,y,i,c0,c1,c2,c3,c4,c5,c6,c7,tv1,tv2,tu,tl,t) \
tu = T[2*(uint32_t)x[4*c0+0]]; \
tl = T[2*(uint32_t)x[4*c0+0]+1]; \
tv1 = T[2*(uint32_t)x[4*c1+1]]; \
tv2 = T[2*(uint32_t)x[4*c1+1]+1]; \
ROTATE_COLUMN_DOWN(tv1,tv2,1,t) \
tu ^= tv1; \
tl ^= tv2; \
tv1 = T[2*(uint32_t)x[4*c2+2]]; \
tv2 = T[2*(uint32_t)x[4*c2+2]+1]; \
ROTATE_COLUMN_DOWN(tv1,tv2,2,t) \
tu ^= tv1; \
tl ^= tv2; \
tv1 = T[2*(uint32_t)x[4*c3+3]]; \
tv2 = T[2*(uint32_t)x[4*c3+3]+1]; \
ROTATE_COLUMN_DOWN(tv1,tv2,3,t) \
tu ^= tv1; \
tl ^= tv2; \
tl ^= T[2*(uint32_t)x[4*c4+0]]; \
tu ^= T[2*(uint32_t)x[4*c4+0]+1]; \
tv1 = T[2*(uint32_t)x[4*c5+1]]; \
tv2 = T[2*(uint32_t)x[4*c5+1]+1]; \
ROTATE_COLUMN_DOWN(tv1,tv2,1,t) \
tl ^= tv1; \
tu ^= tv2; \
tv1 = T[2*(uint32_t)x[4*c6+2]]; \
tv2 = T[2*(uint32_t)x[4*c6+2]+1]; \
ROTATE_COLUMN_DOWN(tv1,tv2,2,t) \
tl ^= tv1; \
tu ^= tv2; \
tv1 = T[2*(uint32_t)x[4*c7+3]]; \
tv2 = T[2*(uint32_t)x[4*c7+3]+1]; \
ROTATE_COLUMN_DOWN(tv1,tv2,3,t) \
tl ^= tv1; \
tu ^= tv2; \
y[i] = tu; \
y[i+1] = tl;
/* compute one round of P (short variants) */
static void RND512P(uint8_t *x, uint32_t *y, uint32_t r) {
uint32_t temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp;
uint32_t* x32 = (uint32_t*)x;
x32[ 0] ^= 0x00000000^r;
x32[ 2] ^= 0x00000010^r;
x32[ 4] ^= 0x00000020^r;
x32[ 6] ^= 0x00000030^r;
x32[ 8] ^= 0x00000040^r;
x32[10] ^= 0x00000050^r;
x32[12] ^= 0x00000060^r;
x32[14] ^= 0x00000070^r;
COLUMN(x,y, 0, 0, 2, 4, 6, 9, 11, 13, 15, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y, 2, 2, 4, 6, 8, 11, 13, 15, 1, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y, 4, 4, 6, 8, 10, 13, 15, 1, 3, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y, 6, 6, 8, 10, 12, 15, 1, 3, 5, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y, 8, 8, 10, 12, 14, 1, 3, 5, 7, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y,10, 10, 12, 14, 0, 3, 5, 7, 9, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y,12, 12, 14, 0, 2, 5, 7, 9, 11, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y,14, 14, 0, 2, 4, 7, 9, 11, 13, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
}
/* compute one round of Q (short variants) */
static void RND512Q(uint8_t *x, uint32_t *y, uint32_t r) {
uint32_t temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp;
uint32_t* x32 = (uint32_t*)x;
x32[ 0] = ~x32[ 0];
x32[ 1] ^= 0xffffffff^r;
x32[ 2] = ~x32[ 2];
x32[ 3] ^= 0xefffffff^r;
x32[ 4] = ~x32[ 4];
x32[ 5] ^= 0xdfffffff^r;
x32[ 6] = ~x32[ 6];
x32[ 7] ^= 0xcfffffff^r;
x32[ 8] = ~x32[ 8];
x32[ 9] ^= 0xbfffffff^r;
x32[10] = ~x32[10];
x32[11] ^= 0xafffffff^r;
x32[12] = ~x32[12];
x32[13] ^= 0x9fffffff^r;
x32[14] = ~x32[14];
x32[15] ^= 0x8fffffff^r;
COLUMN(x,y, 0, 2, 6, 10, 14, 1, 5, 9, 13, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y, 2, 4, 8, 12, 0, 3, 7, 11, 15, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y, 4, 6, 10, 14, 2, 5, 9, 13, 1, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y, 6, 8, 12, 0, 4, 7, 11, 15, 3, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y, 8, 10, 14, 2, 6, 9, 13, 1, 5, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y,10, 12, 0, 4, 8, 11, 15, 3, 7, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y,12, 14, 2, 6, 10, 13, 1, 5, 9, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
COLUMN(x,y,14, 0, 4, 8, 12, 15, 3, 7, 11, temp_v1, temp_v2, temp_upper_value, temp_lower_value, temp);
}
/* compute compression function (short variants) */
static void F512(uint32_t *h, const uint32_t *m) {
int i;
uint32_t Ptmp[2*COLS512];
uint32_t Qtmp[2*COLS512];
uint32_t y[2*COLS512];
uint32_t z[2*COLS512];
for (i = 0; i < 2*COLS512; i++) {
z[i] = m[i];
Ptmp[i] = h[i]^m[i];
}
/* compute Q(m) */
RND512Q((uint8_t*)z, y, 0x00000000);
RND512Q((uint8_t*)y, z, 0x01000000);
RND512Q((uint8_t*)z, y, 0x02000000);
RND512Q((uint8_t*)y, z, 0x03000000);
RND512Q((uint8_t*)z, y, 0x04000000);
RND512Q((uint8_t*)y, z, 0x05000000);
RND512Q((uint8_t*)z, y, 0x06000000);
RND512Q((uint8_t*)y, z, 0x07000000);
RND512Q((uint8_t*)z, y, 0x08000000);
RND512Q((uint8_t*)y, Qtmp, 0x09000000);
/* compute P(h+m) */
RND512P((uint8_t*)Ptmp, y, 0x00000000);
RND512P((uint8_t*)y, z, 0x00000001);
RND512P((uint8_t*)z, y, 0x00000002);
RND512P((uint8_t*)y, z, 0x00000003);
RND512P((uint8_t*)z, y, 0x00000004);
RND512P((uint8_t*)y, z, 0x00000005);
RND512P((uint8_t*)z, y, 0x00000006);
RND512P((uint8_t*)y, z, 0x00000007);
RND512P((uint8_t*)z, y, 0x00000008);
RND512P((uint8_t*)y, Ptmp, 0x00000009);
/* compute P(h+m) + Q(m) + h */
for (i = 0; i < 2*COLS512; i++) {
h[i] ^= Ptmp[i]^Qtmp[i];
}
}
/* digest up to msglen bytes of input (full blocks only) */
static void Transform(hashState *ctx,
const uint8_t *input,
int msglen) {
/* digest message, one block at a time */
for (; msglen >= SIZE512;
msglen -= SIZE512, input += SIZE512) {
F512(ctx->chaining,(uint32_t*)input);
/* increment block counter */
ctx->block_counter1++;
if (ctx->block_counter1 == 0) ctx->block_counter2++;
}
}
/* given state h, do h <- P(h)+h */
static void OutputTransformation(hashState *ctx) {
int j;
uint32_t temp[2*COLS512];
uint32_t y[2*COLS512];
uint32_t z[2*COLS512];
for (j = 0; j < 2*COLS512; j++) {
temp[j] = ctx->chaining[j];
}
RND512P((uint8_t*)temp, y, 0x00000000);
RND512P((uint8_t*)y, z, 0x00000001);
RND512P((uint8_t*)z, y, 0x00000002);
RND512P((uint8_t*)y, z, 0x00000003);
RND512P((uint8_t*)z, y, 0x00000004);
RND512P((uint8_t*)y, z, 0x00000005);
RND512P((uint8_t*)z, y, 0x00000006);
RND512P((uint8_t*)y, z, 0x00000007);
RND512P((uint8_t*)z, y, 0x00000008);
RND512P((uint8_t*)y, temp, 0x00000009);
for (j = 0; j < 2*COLS512; j++) {
ctx->chaining[j] ^= temp[j];
}
}
/* initialise context */
static void Init(hashState* ctx) {
int i = 0;
/* allocate memory for state and data buffer */
for(;i<(SIZE512/sizeof(uint32_t));i++)
{
ctx->chaining[i] = 0;
}
/* set initial value */
ctx->chaining[2*COLS512-1] = u32BIG((uint32_t)HASH_BIT_LEN);
/* set other variables */
ctx->buf_ptr = 0;
ctx->block_counter1 = 0;
ctx->block_counter2 = 0;
ctx->bits_in_last_byte = 0;
}
/* update state with databitlen bits of input */
static void Update(hashState* ctx,
const BitSequence* input,
DataLength databitlen) {
int index = 0;
int msglen = (int)(databitlen/8);
int rem = (int)(databitlen%8);
/* if the buffer contains data that has not yet been digested, first
add data to buffer until full */
if (ctx->buf_ptr) {
while (ctx->buf_ptr < SIZE512 && index < msglen) {
ctx->buffer[(int)ctx->buf_ptr++] = input[index++];
}
if (ctx->buf_ptr < SIZE512) {
/* buffer still not full, return */
if (rem) {
ctx->bits_in_last_byte = rem;
ctx->buffer[(int)ctx->buf_ptr++] = input[index];
}
return;
}
/* digest buffer */
ctx->buf_ptr = 0;
Transform(ctx, ctx->buffer, SIZE512);
}
/* digest bulk of message */
Transform(ctx, input+index, msglen-index);
index += ((msglen-index)/SIZE512)*SIZE512;
/* store remaining data in buffer */
while (index < msglen) {
ctx->buffer[(int)ctx->buf_ptr++] = input[index++];
}
/* if non-integral number of bytes have been supplied, store
remaining bits in last byte, together with information about
number of bits */
if (rem) {
ctx->bits_in_last_byte = rem;
ctx->buffer[(int)ctx->buf_ptr++] = input[index];
}
}
#define BILB ctx->bits_in_last_byte
/* finalise: process remaining data (including padding), perform
output transformation, and write hash result to 'output' */
static void Final(hashState* ctx,
BitSequence* output) {
int i, j = 0, hashbytelen = HASH_BIT_LEN/8;
uint8_t *s = (BitSequence*)ctx->chaining;
/* pad with '1'-bit and first few '0'-bits */
if (BILB) {
ctx->buffer[(int)ctx->buf_ptr-1] &= ((1<<BILB)-1)<<(8-BILB);
ctx->buffer[(int)ctx->buf_ptr-1] ^= 0x1<<(7-BILB);
BILB = 0;
}
else ctx->buffer[(int)ctx->buf_ptr++] = 0x80;
/* pad with '0'-bits */
if (ctx->buf_ptr > SIZE512-LENGTHFIELDLEN) {
/* padding requires two blocks */
while (ctx->buf_ptr < SIZE512) {
ctx->buffer[(int)ctx->buf_ptr++] = 0;
}
/* digest first padding block */
Transform(ctx, ctx->buffer, SIZE512);
ctx->buf_ptr = 0;
}
while (ctx->buf_ptr < SIZE512-LENGTHFIELDLEN) {
ctx->buffer[(int)ctx->buf_ptr++] = 0;
}
/* length padding */
ctx->block_counter1++;
if (ctx->block_counter1 == 0) ctx->block_counter2++;
ctx->buf_ptr = SIZE512;
while (ctx->buf_ptr > SIZE512-(int)sizeof(uint32_t)) {
ctx->buffer[(int)--ctx->buf_ptr] = (uint8_t)ctx->block_counter1;
ctx->block_counter1 >>= 8;
}
while (ctx->buf_ptr > SIZE512-LENGTHFIELDLEN) {
ctx->buffer[(int)--ctx->buf_ptr] = (uint8_t)ctx->block_counter2;
ctx->block_counter2 >>= 8;
}
/* digest final padding block */
Transform(ctx, ctx->buffer, SIZE512);
/* perform output transformation */
OutputTransformation(ctx);
/* store hash result in output */
for (i = SIZE512-hashbytelen; i < SIZE512; i++,j++) {
output[j] = s[i];
}
/* zeroise relevant variables and deallocate memory */
for (i = 0; i < COLS512; i++) {
ctx->chaining[i] = 0;
}
for (i = 0; i < SIZE512; i++) {
ctx->buffer[i] = 0;
}
}
/* hash bit sequence */
void groestl(const BitSequence* data,
DataLength databitlen,
BitSequence* hashval) {
hashState context;
/* initialise */
Init(&context);
/* process message */
Update(&context, data, databitlen);
/* finalise */
Final(&context, hashval);
}
/*
static int crypto_hash(unsigned char *out,
const unsigned char *in,
unsigned long long len)
{
groestl(in, 8*len, out);
return 0;
}
2015-01-02 16:52:46 +00:00
*/