mirror of
https://git.wownero.com/wownero/RandomWOW.git
synced 2024-12-22 07:48:54 +00:00
904 lines
35 KiB
C++
904 lines
35 KiB
C++
/*
|
|
Copyright (c) 2018-2019, tevador <tevador@gmail.com>
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the copyright holder nor the
|
|
names of its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "configuration.h"
|
|
#include "program.hpp"
|
|
#include "blake2/endian.h"
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <stdexcept>
|
|
#include <iomanip>
|
|
#include "superscalar.hpp"
|
|
#include "intrin_portable.h"
|
|
#include "reciprocal.h"
|
|
#include "common.hpp"
|
|
|
|
namespace randomx {
|
|
|
|
static bool isMultiplication(SuperscalarInstructionType type) {
|
|
return type == SuperscalarInstructionType::IMUL_R || type == SuperscalarInstructionType::IMULH_R || type == SuperscalarInstructionType::ISMULH_R || type == SuperscalarInstructionType::IMUL_RCP;
|
|
}
|
|
|
|
//uOPs (micro-ops) are represented only by the execution port they can go to
|
|
namespace ExecutionPort {
|
|
using type = int;
|
|
constexpr type Null = 0;
|
|
constexpr type P0 = 1;
|
|
constexpr type P1 = 2;
|
|
constexpr type P5 = 4;
|
|
constexpr type P01 = P0 | P1;
|
|
constexpr type P05 = P0 | P5;
|
|
constexpr type P015 = P0 | P1 | P5;
|
|
}
|
|
|
|
//Macro-operation as output of the x86 decoder
|
|
//Usually one macro-op = one x86 instruction, but 2 instructions are sometimes fused into 1 macro-op
|
|
//Macro-op can consist of 1 or 2 uOPs.
|
|
class MacroOp {
|
|
public:
|
|
MacroOp(const char* name, int size)
|
|
: name_(name), size_(size), latency_(0), uop1_(ExecutionPort::Null), uop2_(ExecutionPort::Null) {}
|
|
MacroOp(const char* name, int size, int latency, ExecutionPort::type uop)
|
|
: name_(name), size_(size), latency_(latency), uop1_(uop), uop2_(ExecutionPort::Null) {}
|
|
MacroOp(const char* name, int size, int latency, ExecutionPort::type uop1, ExecutionPort::type uop2)
|
|
: name_(name), size_(size), latency_(latency), uop1_(uop1), uop2_(uop2) {}
|
|
MacroOp(const MacroOp& parent, bool dependent)
|
|
: name_(parent.name_), size_(parent.size_), latency_(parent.latency_), uop1_(parent.uop1_), uop2_(parent.uop2_), dependent_(dependent) {}
|
|
const char* getName() const {
|
|
return name_;
|
|
}
|
|
int getSize() const {
|
|
return size_;
|
|
}
|
|
int getLatency() const {
|
|
return latency_;
|
|
}
|
|
ExecutionPort::type getUop1() const {
|
|
return uop1_;
|
|
}
|
|
ExecutionPort::type getUop2() const {
|
|
return uop2_;
|
|
}
|
|
bool isSimple() const {
|
|
return uop2_ == ExecutionPort::Null;
|
|
}
|
|
bool isEliminated() const {
|
|
return uop1_ == ExecutionPort::Null;
|
|
}
|
|
bool isDependent() const {
|
|
return dependent_;
|
|
}
|
|
static const MacroOp Add_rr;
|
|
static const MacroOp Add_ri;
|
|
static const MacroOp Lea_sib;
|
|
static const MacroOp Sub_rr;
|
|
static const MacroOp Imul_rr;
|
|
static const MacroOp Imul_r;
|
|
static const MacroOp Mul_r;
|
|
static const MacroOp Mov_rr;
|
|
static const MacroOp Mov_ri64;
|
|
static const MacroOp Xor_rr;
|
|
static const MacroOp Xor_ri;
|
|
static const MacroOp Ror_rcl;
|
|
static const MacroOp Ror_ri;
|
|
static const MacroOp TestJz_fused;
|
|
static const MacroOp Xor_self;
|
|
static const MacroOp Cmp_ri;
|
|
static const MacroOp Setcc_r;
|
|
private:
|
|
const char* name_;
|
|
int size_;
|
|
int latency_;
|
|
ExecutionPort::type uop1_;
|
|
ExecutionPort::type uop2_;
|
|
bool dependent_ = false;
|
|
};
|
|
|
|
//Size: 3 bytes
|
|
const MacroOp MacroOp::Add_rr = MacroOp("add r,r", 3, 1, ExecutionPort::P015);
|
|
const MacroOp MacroOp::Sub_rr = MacroOp("sub r,r", 3, 1, ExecutionPort::P015);
|
|
const MacroOp MacroOp::Xor_rr = MacroOp("xor r,r", 3, 1, ExecutionPort::P015);
|
|
const MacroOp MacroOp::Imul_r = MacroOp("imul r", 3, 4, ExecutionPort::P1, ExecutionPort::P5);
|
|
const MacroOp MacroOp::Mul_r = MacroOp("mul r", 3, 4, ExecutionPort::P1, ExecutionPort::P5);
|
|
const MacroOp MacroOp::Mov_rr = MacroOp("mov r,r", 3);
|
|
|
|
//Size: 4 bytes
|
|
const MacroOp MacroOp::Lea_sib = MacroOp("lea r,r+r*s", 4, 1, ExecutionPort::P01);
|
|
const MacroOp MacroOp::Imul_rr = MacroOp("imul r,r", 4, 3, ExecutionPort::P1);
|
|
const MacroOp MacroOp::Ror_ri = MacroOp("ror r,i", 4, 1, ExecutionPort::P05);
|
|
|
|
//Size: 7 bytes (can be optionally padded with nop to 8 or 9 bytes)
|
|
const MacroOp MacroOp::Add_ri = MacroOp("add r,i", 7, 1, ExecutionPort::P015);
|
|
const MacroOp MacroOp::Xor_ri = MacroOp("xor r,i", 7, 1, ExecutionPort::P015);
|
|
|
|
//Size: 10 bytes
|
|
const MacroOp MacroOp::Mov_ri64 = MacroOp("mov rax,i64", 10, 1, ExecutionPort::P015);
|
|
|
|
//Unused:
|
|
const MacroOp MacroOp::Ror_rcl = MacroOp("ror r,cl", 3, 1, ExecutionPort::P0, ExecutionPort::P5);
|
|
const MacroOp MacroOp::Xor_self = MacroOp("xor rcx,rcx", 3);
|
|
const MacroOp MacroOp::Cmp_ri = MacroOp("cmp r,i", 7, 1, ExecutionPort::P015);
|
|
const MacroOp MacroOp::Setcc_r = MacroOp("setcc cl", 3, 1, ExecutionPort::P05);
|
|
const MacroOp MacroOp::TestJz_fused = MacroOp("testjz r,i", 13, 0, ExecutionPort::P5);
|
|
|
|
const MacroOp IMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Mul_r, MacroOp::Mov_rr };
|
|
const MacroOp ISMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Imul_r, MacroOp::Mov_rr };
|
|
const MacroOp IMUL_RCP_ops_array[] = { MacroOp::Mov_ri64, MacroOp(MacroOp::Imul_rr, true) };
|
|
|
|
class SuperscalarInstructionInfo {
|
|
public:
|
|
const char* getName() const {
|
|
return name_;
|
|
}
|
|
int getSize() const {
|
|
return ops_.size();
|
|
}
|
|
bool isSimple() const {
|
|
return getSize() == 1;
|
|
}
|
|
int getLatency() const {
|
|
return latency_;
|
|
}
|
|
const MacroOp& getOp(int index) const {
|
|
return ops_[index];
|
|
}
|
|
SuperscalarInstructionType getType() const {
|
|
return type_;
|
|
}
|
|
int getResultOp() const {
|
|
return resultOp_;
|
|
}
|
|
int getDstOp() const {
|
|
return dstOp_;
|
|
}
|
|
int getSrcOp() const {
|
|
return srcOp_;
|
|
}
|
|
static const SuperscalarInstructionInfo ISUB_R;
|
|
static const SuperscalarInstructionInfo IXOR_R;
|
|
static const SuperscalarInstructionInfo IADD_RS;
|
|
static const SuperscalarInstructionInfo IMUL_R;
|
|
static const SuperscalarInstructionInfo IROR_C;
|
|
static const SuperscalarInstructionInfo IADD_C7;
|
|
static const SuperscalarInstructionInfo IXOR_C7;
|
|
static const SuperscalarInstructionInfo IADD_C8;
|
|
static const SuperscalarInstructionInfo IXOR_C8;
|
|
static const SuperscalarInstructionInfo IADD_C9;
|
|
static const SuperscalarInstructionInfo IXOR_C9;
|
|
static const SuperscalarInstructionInfo IMULH_R;
|
|
static const SuperscalarInstructionInfo ISMULH_R;
|
|
static const SuperscalarInstructionInfo IMUL_RCP;
|
|
static const SuperscalarInstructionInfo NOP;
|
|
private:
|
|
const char* name_;
|
|
SuperscalarInstructionType type_;
|
|
std::vector<MacroOp> ops_;
|
|
int latency_;
|
|
int resultOp_ = 0;
|
|
int dstOp_ = 0;
|
|
int srcOp_;
|
|
|
|
SuperscalarInstructionInfo(const char* name)
|
|
: name_(name), type_(SuperscalarInstructionType::INVALID), latency_(0) {}
|
|
SuperscalarInstructionInfo(const char* name, SuperscalarInstructionType type, const MacroOp& op, int srcOp)
|
|
: name_(name), type_(type), latency_(op.getLatency()), srcOp_(srcOp) {
|
|
ops_.push_back(MacroOp(op));
|
|
}
|
|
template <size_t N>
|
|
SuperscalarInstructionInfo(const char* name, SuperscalarInstructionType type, const MacroOp(&arr)[N], int resultOp, int dstOp, int srcOp)
|
|
: name_(name), type_(type), latency_(0), resultOp_(resultOp), dstOp_(dstOp), srcOp_(srcOp) {
|
|
for (unsigned i = 0; i < N; ++i) {
|
|
ops_.push_back(MacroOp(arr[i]));
|
|
latency_ += ops_.back().getLatency();
|
|
}
|
|
static_assert(N > 1, "Invalid array size");
|
|
}
|
|
};
|
|
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::ISUB_R = SuperscalarInstructionInfo("ISUB_R", SuperscalarInstructionType::ISUB_R, MacroOp::Sub_rr, 0);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IXOR_R = SuperscalarInstructionInfo("IXOR_R", SuperscalarInstructionType::IXOR_R, MacroOp::Xor_rr, 0);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IADD_RS = SuperscalarInstructionInfo("IADD_RS", SuperscalarInstructionType::IADD_RS, MacroOp::Lea_sib, 0);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IMUL_R = SuperscalarInstructionInfo("IMUL_R", SuperscalarInstructionType::IMUL_R, MacroOp::Imul_rr, 0);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IROR_C = SuperscalarInstructionInfo("IROR_C", SuperscalarInstructionType::IROR_C, MacroOp::Ror_ri, -1);
|
|
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IADD_C7 = SuperscalarInstructionInfo("IADD_C7", SuperscalarInstructionType::IADD_C7, MacroOp::Add_ri, -1);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IXOR_C7 = SuperscalarInstructionInfo("IXOR_C7", SuperscalarInstructionType::IXOR_C7, MacroOp::Xor_ri, -1);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IADD_C8 = SuperscalarInstructionInfo("IADD_C8", SuperscalarInstructionType::IADD_C8, MacroOp::Add_ri, -1);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IXOR_C8 = SuperscalarInstructionInfo("IXOR_C8", SuperscalarInstructionType::IXOR_C8, MacroOp::Xor_ri, -1);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IADD_C9 = SuperscalarInstructionInfo("IADD_C9", SuperscalarInstructionType::IADD_C9, MacroOp::Add_ri, -1);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IXOR_C9 = SuperscalarInstructionInfo("IXOR_C9", SuperscalarInstructionType::IXOR_C9, MacroOp::Xor_ri, -1);
|
|
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IMULH_R = SuperscalarInstructionInfo("IMULH_R", SuperscalarInstructionType::IMULH_R, IMULH_R_ops_array, 1, 0, 1);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::ISMULH_R = SuperscalarInstructionInfo("ISMULH_R", SuperscalarInstructionType::ISMULH_R, ISMULH_R_ops_array, 1, 0, 1);
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::IMUL_RCP = SuperscalarInstructionInfo("IMUL_RCP", SuperscalarInstructionType::IMUL_RCP, IMUL_RCP_ops_array, 1, 1, -1);
|
|
|
|
const SuperscalarInstructionInfo SuperscalarInstructionInfo::NOP = SuperscalarInstructionInfo("NOP");
|
|
|
|
//these are some of the options how to split a 16-byte window into 3 or 4 x86 instructions.
|
|
//RandomX uses instructions with a native size of 3 (sub, xor, mul, mov), 4 (lea, mul), 7 (xor, add immediate) or 10 bytes (mov 64-bit immediate).
|
|
//Slots with sizes of 8 or 9 bytes need to be padded with a nop instruction.
|
|
const int buffer0[] = { 4, 8, 4 };
|
|
const int buffer1[] = { 7, 3, 3, 3 };
|
|
const int buffer2[] = { 3, 7, 3, 3 };
|
|
const int buffer3[] = { 4, 9, 3 };
|
|
const int buffer4[] = { 4, 4, 4, 4 };
|
|
const int buffer5[] = { 3, 3, 10 };
|
|
|
|
class DecoderBuffer {
|
|
public:
|
|
static const DecoderBuffer Default;
|
|
template <size_t N>
|
|
DecoderBuffer(const char* name, int index, const int(&arr)[N])
|
|
: name_(name), index_(index), counts_(arr), opsCount_(N) {}
|
|
const int* getCounts() const {
|
|
return counts_;
|
|
}
|
|
int getSize() const {
|
|
return opsCount_;
|
|
}
|
|
int getIndex() const {
|
|
return index_;
|
|
}
|
|
const char* getName() const {
|
|
return name_;
|
|
}
|
|
const DecoderBuffer* fetchNext(SuperscalarInstructionType instrType, int cycle, int mulCount, Blake2Generator& gen) const {
|
|
//If the current RandomX instruction is "IMULH", the next fetch configuration must be 3-3-10
|
|
//because the full 128-bit multiplication instruction is 3 bytes long and decodes to 2 uOPs on Intel CPUs.
|
|
//Intel CPUs can decode at most 4 uOPs per cycle, so this requires a 2-1-1 configuration for a total of 3 macro ops.
|
|
if (instrType == SuperscalarInstructionType::IMULH_R || instrType == SuperscalarInstructionType::ISMULH_R)
|
|
return &decodeBuffer3310;
|
|
|
|
//To make sure that the multiplication port is saturated, a 4-4-4-4 configuration is generated if the number of multiplications
|
|
//is lower than the number of cycles.
|
|
if (mulCount < cycle + 1)
|
|
return &decodeBuffer4444;
|
|
|
|
//If the current RandomX instruction is "IMUL_RCP", the next buffer must begin with a 4-byte slot for multiplication.
|
|
if(instrType == SuperscalarInstructionType::IMUL_RCP)
|
|
return (gen.getByte() & 1) ? &decodeBuffer484 : &decodeBuffer493;
|
|
|
|
//Default: select a random fetch configuration.
|
|
return fetchNextDefault(gen);
|
|
}
|
|
private:
|
|
const char* name_;
|
|
int index_;
|
|
const int* counts_;
|
|
int opsCount_;
|
|
DecoderBuffer() : index_(-1) {}
|
|
static const DecoderBuffer decodeBuffer484;
|
|
static const DecoderBuffer decodeBuffer7333;
|
|
static const DecoderBuffer decodeBuffer3733;
|
|
static const DecoderBuffer decodeBuffer493;
|
|
static const DecoderBuffer decodeBuffer4444;
|
|
static const DecoderBuffer decodeBuffer3310;
|
|
static const DecoderBuffer* decodeBuffers[4];
|
|
const DecoderBuffer* fetchNextDefault(Blake2Generator& gen) const {
|
|
return decodeBuffers[gen.getByte() & 3];
|
|
}
|
|
};
|
|
|
|
const DecoderBuffer DecoderBuffer::decodeBuffer484 = DecoderBuffer("4,8,4", 0, buffer0);
|
|
const DecoderBuffer DecoderBuffer::decodeBuffer7333 = DecoderBuffer("7,3,3,3", 1, buffer1);
|
|
const DecoderBuffer DecoderBuffer::decodeBuffer3733 = DecoderBuffer("3,7,3,3", 2, buffer2);
|
|
const DecoderBuffer DecoderBuffer::decodeBuffer493 = DecoderBuffer("4,9,3", 3, buffer3);
|
|
const DecoderBuffer DecoderBuffer::decodeBuffer4444 = DecoderBuffer("4,4,4,4", 4, buffer4);
|
|
const DecoderBuffer DecoderBuffer::decodeBuffer3310 = DecoderBuffer("3,3,10", 5, buffer5);
|
|
|
|
const DecoderBuffer* DecoderBuffer::decodeBuffers[4] = {
|
|
&DecoderBuffer::decodeBuffer484,
|
|
&DecoderBuffer::decodeBuffer7333,
|
|
&DecoderBuffer::decodeBuffer3733,
|
|
&DecoderBuffer::decodeBuffer493,
|
|
};
|
|
|
|
const DecoderBuffer DecoderBuffer::Default = DecoderBuffer();
|
|
|
|
const SuperscalarInstructionInfo* slot_3[] = { &SuperscalarInstructionInfo::ISUB_R, &SuperscalarInstructionInfo::IXOR_R };
|
|
const SuperscalarInstructionInfo* slot_3L[] = { &SuperscalarInstructionInfo::ISUB_R, &SuperscalarInstructionInfo::IXOR_R, &SuperscalarInstructionInfo::IMULH_R, &SuperscalarInstructionInfo::ISMULH_R };
|
|
const SuperscalarInstructionInfo* slot_4[] = { &SuperscalarInstructionInfo::IROR_C, &SuperscalarInstructionInfo::IADD_RS };
|
|
const SuperscalarInstructionInfo* slot_7[] = { &SuperscalarInstructionInfo::IXOR_C7, &SuperscalarInstructionInfo::IADD_C7 };
|
|
const SuperscalarInstructionInfo* slot_8[] = { &SuperscalarInstructionInfo::IXOR_C8, &SuperscalarInstructionInfo::IADD_C8 };
|
|
const SuperscalarInstructionInfo* slot_9[] = { &SuperscalarInstructionInfo::IXOR_C9, &SuperscalarInstructionInfo::IADD_C9 };
|
|
const SuperscalarInstructionInfo* slot_10 = &SuperscalarInstructionInfo::IMUL_RCP;
|
|
|
|
static bool selectRegister(std::vector<int>& availableRegisters, Blake2Generator& gen, int& reg) {
|
|
int index;
|
|
if (availableRegisters.size() == 0)
|
|
return false;
|
|
|
|
if (availableRegisters.size() > 1) {
|
|
index = gen.getUInt32() % availableRegisters.size();
|
|
}
|
|
else {
|
|
index = 0;
|
|
}
|
|
reg = availableRegisters[index];
|
|
return true;
|
|
}
|
|
|
|
class RegisterInfo {
|
|
public:
|
|
RegisterInfo() : latency(0), lastOpGroup(SuperscalarInstructionType::INVALID), lastOpPar(-1), value(0) {}
|
|
int latency;
|
|
SuperscalarInstructionType lastOpGroup;
|
|
int lastOpPar;
|
|
int value;
|
|
};
|
|
|
|
//"SuperscalarInstruction" consists of one or more macro-ops
|
|
class SuperscalarInstruction {
|
|
public:
|
|
void toInstr(Instruction& instr) { //translate to a RandomX instruction format
|
|
instr.opcode = (int)getType();
|
|
instr.dst = dst_;
|
|
instr.src = src_ >= 0 ? src_ : dst_;
|
|
instr.setMod(mod_);
|
|
instr.setImm32(imm32_);
|
|
}
|
|
|
|
void createForSlot(Blake2Generator& gen, int slotSize, int fetchType, bool isLast, bool isFirst) {
|
|
switch (slotSize)
|
|
{
|
|
case 3:
|
|
//if this is the last slot, we can also select "IMULH" instructions
|
|
if (isLast) {
|
|
create(slot_3L[gen.getByte() & 3], gen);
|
|
}
|
|
else {
|
|
create(slot_3[gen.getByte() & 1], gen);
|
|
}
|
|
break;
|
|
case 4:
|
|
//if this is the 4-4-4-4 buffer, issue multiplications as the first 3 instructions
|
|
if (fetchType == 4 && !isLast) {
|
|
create(&SuperscalarInstructionInfo::IMUL_R, gen);
|
|
}
|
|
else {
|
|
create(slot_4[gen.getByte() & 1], gen);
|
|
}
|
|
break;
|
|
case 7:
|
|
create(slot_7[gen.getByte() & 1], gen);
|
|
break;
|
|
case 8:
|
|
create(slot_8[gen.getByte() & 1], gen);
|
|
break;
|
|
case 9:
|
|
create(slot_9[gen.getByte() & 1], gen);
|
|
break;
|
|
case 10:
|
|
create(slot_10, gen);
|
|
break;
|
|
default:
|
|
UNREACHABLE;
|
|
}
|
|
}
|
|
|
|
void create(const SuperscalarInstructionInfo* info, Blake2Generator& gen) {
|
|
info_ = info;
|
|
reset();
|
|
switch (info->getType())
|
|
{
|
|
case SuperscalarInstructionType::ISUB_R: {
|
|
mod_ = 0;
|
|
imm32_ = 0;
|
|
opGroup_ = SuperscalarInstructionType::IADD_RS;
|
|
groupParIsSource_ = true;
|
|
} break;
|
|
|
|
case SuperscalarInstructionType::IXOR_R: {
|
|
mod_ = 0;
|
|
imm32_ = 0;
|
|
opGroup_ = SuperscalarInstructionType::IXOR_R;
|
|
groupParIsSource_ = true;
|
|
} break;
|
|
|
|
case SuperscalarInstructionType::IADD_RS: {
|
|
mod_ = gen.getByte();
|
|
imm32_ = 0;
|
|
opGroup_ = SuperscalarInstructionType::IADD_RS;
|
|
groupParIsSource_ = true;
|
|
} break;
|
|
|
|
case SuperscalarInstructionType::IMUL_R: {
|
|
mod_ = 0;
|
|
imm32_ = 0;
|
|
opGroup_ = SuperscalarInstructionType::IMUL_R;
|
|
groupParIsSource_ = true;
|
|
} break;
|
|
|
|
case SuperscalarInstructionType::IROR_C: {
|
|
mod_ = 0;
|
|
do {
|
|
imm32_ = gen.getByte() & 63;
|
|
} while (imm32_ == 0);
|
|
opGroup_ = SuperscalarInstructionType::IROR_C;
|
|
opGroupPar_ = -1;
|
|
} break;
|
|
|
|
case SuperscalarInstructionType::IADD_C7:
|
|
case SuperscalarInstructionType::IADD_C8:
|
|
case SuperscalarInstructionType::IADD_C9: {
|
|
mod_ = 0;
|
|
imm32_ = gen.getUInt32();
|
|
opGroup_ = SuperscalarInstructionType::IADD_C7;
|
|
opGroupPar_ = -1;
|
|
} break;
|
|
|
|
case SuperscalarInstructionType::IXOR_C7:
|
|
case SuperscalarInstructionType::IXOR_C8:
|
|
case SuperscalarInstructionType::IXOR_C9: {
|
|
mod_ = 0;
|
|
imm32_ = gen.getUInt32();
|
|
opGroup_ = SuperscalarInstructionType::IXOR_C7;
|
|
opGroupPar_ = -1;
|
|
} break;
|
|
|
|
case SuperscalarInstructionType::IMULH_R: {
|
|
canReuse_ = true;
|
|
mod_ = 0;
|
|
imm32_ = 0;
|
|
opGroup_ = SuperscalarInstructionType::IMULH_R;
|
|
opGroupPar_ = gen.getUInt32();
|
|
} break;
|
|
|
|
case SuperscalarInstructionType::ISMULH_R: {
|
|
canReuse_ = true;
|
|
mod_ = 0;
|
|
imm32_ = 0;
|
|
opGroup_ = SuperscalarInstructionType::ISMULH_R;
|
|
opGroupPar_ = gen.getUInt32();
|
|
} break;
|
|
|
|
case SuperscalarInstructionType::IMUL_RCP: {
|
|
mod_ = 0;
|
|
do {
|
|
imm32_ = gen.getUInt32();
|
|
} while (isZeroOrPowerOf2(imm32_));
|
|
opGroup_ = SuperscalarInstructionType::IMUL_RCP;
|
|
opGroupPar_ = -1;
|
|
} break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool selectDestination(int cycle, bool allowChainedMul, RegisterInfo (®isters)[8], Blake2Generator& gen) {
|
|
/*if (allowChainedMultiplication && opGroup_ == SuperscalarInstructionType::IMUL_R)
|
|
std::cout << "Selecting destination with chained MUL enabled" << std::endl;*/
|
|
std::vector<int> availableRegisters;
|
|
//Conditions for the destination register:
|
|
// * value must be ready at the required cycle
|
|
// * cannot be the same as the source register unless the instruction allows it
|
|
// - this avoids optimizable instructions such as "xor r, r" or "sub r, r"
|
|
// * register cannot be multiplied twice in a row unless allowChainedMul is true
|
|
// - this avoids accumulation of trailing zeroes in registers due to excessive multiplication
|
|
// - allowChainedMul is set to true if an attempt to find source/destination registers failed (this is quite rare, but prevents a catastrophic failure of the generator)
|
|
// * either the last instruction applied to the register or its source must be different than this instruction
|
|
// - this avoids optimizable instruction sequences such as "xor r1, r2; xor r1, r2" or "ror r, C1; ror r, C2" or "add r, C1; add r, C2"
|
|
// * register r5 cannot be the destination of the IADD_RS instruction (limitation of the x86 lea instruction)
|
|
for (unsigned i = 0; i < 8; ++i) {
|
|
if (registers[i].latency <= cycle && (canReuse_ || i != src_) && (allowChainedMul || opGroup_ != SuperscalarInstructionType::IMUL_R || registers[i].lastOpGroup != SuperscalarInstructionType::IMUL_R) && (registers[i].lastOpGroup != opGroup_ || registers[i].lastOpPar != opGroupPar_) && (info_->getType() != SuperscalarInstructionType::IADD_RS || i != RegisterNeedsDisplacement))
|
|
availableRegisters.push_back(i);
|
|
}
|
|
return selectRegister(availableRegisters, gen, dst_);
|
|
}
|
|
|
|
bool selectSource(int cycle, RegisterInfo(®isters)[8], Blake2Generator& gen) {
|
|
std::vector<int> availableRegisters;
|
|
//all registers that are ready at the cycle
|
|
for (unsigned i = 0; i < 8; ++i) {
|
|
if (registers[i].latency <= cycle)
|
|
availableRegisters.push_back(i);
|
|
}
|
|
//if there are only 2 available registers for IADD_RS and one of them is r5, select it as the source because it cannot be the destination
|
|
if (availableRegisters.size() == 2 && info_->getType() == SuperscalarInstructionType::IADD_RS) {
|
|
if (availableRegisters[0] == RegisterNeedsDisplacement || availableRegisters[1] == RegisterNeedsDisplacement) {
|
|
opGroupPar_ = src_ = RegisterNeedsDisplacement;
|
|
return true;
|
|
}
|
|
}
|
|
if (selectRegister(availableRegisters, gen, src_)) {
|
|
if (groupParIsSource_)
|
|
opGroupPar_ = src_;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SuperscalarInstructionType getType() {
|
|
return info_->getType();
|
|
}
|
|
int getSource() {
|
|
return src_;
|
|
}
|
|
int getDestination() {
|
|
return dst_;
|
|
}
|
|
SuperscalarInstructionType getGroup() {
|
|
return opGroup_;
|
|
}
|
|
int getGroupPar() {
|
|
return opGroupPar_;
|
|
}
|
|
|
|
const SuperscalarInstructionInfo& getInfo() const {
|
|
return *info_;
|
|
}
|
|
|
|
static const SuperscalarInstruction Null;
|
|
|
|
private:
|
|
const SuperscalarInstructionInfo* info_;
|
|
int src_ = -1;
|
|
int dst_ = -1;
|
|
int mod_;
|
|
uint32_t imm32_;
|
|
SuperscalarInstructionType opGroup_;
|
|
int opGroupPar_;
|
|
bool canReuse_ = false;
|
|
bool groupParIsSource_ = false;
|
|
|
|
void reset() {
|
|
src_ = dst_ = -1;
|
|
canReuse_ = groupParIsSource_ = false;
|
|
}
|
|
|
|
SuperscalarInstruction(const SuperscalarInstructionInfo* info) : info_(info) {
|
|
}
|
|
};
|
|
|
|
const SuperscalarInstruction SuperscalarInstruction::Null = SuperscalarInstruction(&SuperscalarInstructionInfo::NOP);
|
|
|
|
constexpr int CYCLE_MAP_SIZE = RANDOMX_SUPERSCALAR_LATENCY + 4;
|
|
constexpr int LOOK_FORWARD_CYCLES = 4;
|
|
constexpr int MAX_THROWAWAY_COUNT = 256;
|
|
|
|
template<bool commit>
|
|
static int scheduleUop(ExecutionPort::type uop, ExecutionPort::type(&portBusy)[CYCLE_MAP_SIZE][3], int cycle) {
|
|
//The scheduling here is done optimistically by checking port availability in order P5 -> P0 -> P1 to not overload
|
|
//port P1 (multiplication) by instructions that can go to any port.
|
|
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
|
|
if ((uop & ExecutionPort::P5) != 0 && !portBusy[cycle][2]) {
|
|
if (commit) {
|
|
if (trace) std::cout << "; P5 at cycle " << cycle << std::endl;
|
|
portBusy[cycle][2] = uop;
|
|
}
|
|
return cycle;
|
|
}
|
|
if ((uop & ExecutionPort::P0) != 0 && !portBusy[cycle][0]) {
|
|
if (commit) {
|
|
if (trace) std::cout << "; P0 at cycle " << cycle << std::endl;
|
|
portBusy[cycle][0] = uop;
|
|
}
|
|
return cycle;
|
|
}
|
|
if ((uop & ExecutionPort::P1) != 0 && !portBusy[cycle][1]) {
|
|
if (commit) {
|
|
if (trace) std::cout << "; P1 at cycle " << cycle << std::endl;
|
|
portBusy[cycle][1] = uop;
|
|
}
|
|
return cycle;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
template<bool commit>
|
|
static int scheduleMop(const MacroOp& mop, ExecutionPort::type(&portBusy)[CYCLE_MAP_SIZE][3], int cycle, int depCycle) {
|
|
//if this macro-op depends on the previous one, increase the starting cycle if needed
|
|
//this handles an explicit dependency chain in IMUL_RCP
|
|
if (mop.isDependent()) {
|
|
cycle = std::max(cycle, depCycle);
|
|
}
|
|
//move instructions are eliminated and don't need an execution unit
|
|
if (mop.isEliminated()) {
|
|
if (commit)
|
|
if (trace) std::cout << "; (eliminated)" << std::endl;
|
|
return cycle;
|
|
}
|
|
else if (mop.isSimple()) {
|
|
//this macro-op has only one uOP
|
|
return scheduleUop<commit>(mop.getUop1(), portBusy, cycle);
|
|
}
|
|
else {
|
|
//macro-ops with 2 uOPs are scheduled conservatively by requiring both uOPs to execute in the same cycle
|
|
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
|
|
|
|
int cycle1 = scheduleUop<false>(mop.getUop1(), portBusy, cycle);
|
|
int cycle2 = scheduleUop<false>(mop.getUop2(), portBusy, cycle);
|
|
|
|
if (cycle1 >= 0 && cycle1 == cycle2) {
|
|
if (commit) {
|
|
scheduleUop<true>(mop.getUop1(), portBusy, cycle1);
|
|
scheduleUop<true>(mop.getUop2(), portBusy, cycle2);
|
|
}
|
|
return cycle1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void generateSuperscalar(SuperscalarProgram& prog, Blake2Generator& gen) {
|
|
|
|
ExecutionPort::type portBusy[CYCLE_MAP_SIZE][3];
|
|
memset(portBusy, 0, sizeof(portBusy));
|
|
RegisterInfo registers[8];
|
|
|
|
const DecoderBuffer* decodeBuffer = &DecoderBuffer::Default;
|
|
SuperscalarInstruction currentInstruction = SuperscalarInstruction::Null;
|
|
int macroOpIndex = 0;
|
|
int codeSize = 0;
|
|
int macroOpCount = 0;
|
|
int cycle = 0;
|
|
int depCycle = 0;
|
|
int retireCycle = 0;
|
|
bool portsSaturated = false;
|
|
int programSize = 0;
|
|
int mulCount = 0;
|
|
int decodeCycle;
|
|
int throwAwayCount = 0;
|
|
|
|
//decode instructions for RANDOMX_SUPERSCALAR_LATENCY cycles or until an execution port is saturated.
|
|
//Each decode cycle decodes 16 bytes of x86 code.
|
|
//Since a decode cycle produces on average 3.45 macro-ops and there are only 3 ALU ports, execution ports are always
|
|
//saturated first. The cycle limit is present only to guarantee loop termination.
|
|
//Program size is limited to SuperscalarMaxSize instructions.
|
|
for (decodeCycle = 0; decodeCycle < RANDOMX_SUPERSCALAR_LATENCY && !portsSaturated && programSize < SuperscalarMaxSize; ++decodeCycle) {
|
|
|
|
//select a decode configuration
|
|
decodeBuffer = decodeBuffer->fetchNext(currentInstruction.getType(), decodeCycle, mulCount, gen);
|
|
if (trace) std::cout << "; ------------- fetch cycle " << cycle << " (" << decodeBuffer->getName() << ")" << std::endl;
|
|
|
|
int bufferIndex = 0;
|
|
|
|
//fill all instruction slots in the current decode buffer
|
|
while (bufferIndex < decodeBuffer->getSize()) {
|
|
int topCycle = cycle;
|
|
|
|
//if we have issued all macro-ops for the current RandomX instruction, create a new instruction
|
|
if (macroOpIndex >= currentInstruction.getInfo().getSize()) {
|
|
if (portsSaturated || programSize >= SuperscalarMaxSize)
|
|
break;
|
|
//select an instruction so that the first macro-op fits into the current slot
|
|
currentInstruction.createForSlot(gen, decodeBuffer->getCounts()[bufferIndex], decodeBuffer->getIndex(), decodeBuffer->getSize() == bufferIndex + 1, bufferIndex == 0);
|
|
macroOpIndex = 0;
|
|
if (trace) std::cout << "; " << currentInstruction.getInfo().getName() << std::endl;
|
|
}
|
|
const MacroOp& mop = currentInstruction.getInfo().getOp(macroOpIndex);
|
|
if (trace) std::cout << mop.getName() << " ";
|
|
|
|
//calculate the earliest cycle when this macro-op (all of its uOPs) can be scheduled for execution
|
|
int scheduleCycle = scheduleMop<false>(mop, portBusy, cycle, depCycle);
|
|
if (scheduleCycle < 0) {
|
|
if (trace) std::cout << "Unable to map operation '" << mop.getName() << "' to execution port (cycle " << cycle << ")" << std::endl;
|
|
//__debugbreak();
|
|
portsSaturated = true;
|
|
break;
|
|
}
|
|
|
|
//find a source register (if applicable) that will be ready when this instruction executes
|
|
if (macroOpIndex == currentInstruction.getInfo().getSrcOp()) {
|
|
int forward;
|
|
//if no suitable operand is ready, look up to LOOK_FORWARD_CYCLES forward
|
|
for (forward = 0; forward < LOOK_FORWARD_CYCLES && !currentInstruction.selectSource(scheduleCycle, registers, gen); ++forward) {
|
|
if (trace) std::cout << "; src STALL at cycle " << cycle << std::endl;
|
|
++scheduleCycle;
|
|
++cycle;
|
|
}
|
|
//if no register was found, throw the instruction away and try another one
|
|
if (forward == LOOK_FORWARD_CYCLES) {
|
|
if (throwAwayCount < MAX_THROWAWAY_COUNT) {
|
|
throwAwayCount++;
|
|
macroOpIndex = currentInstruction.getInfo().getSize();
|
|
if (trace) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl;
|
|
//cycle = topCycle;
|
|
continue;
|
|
}
|
|
//abort this decode buffer
|
|
if (trace) std::cout << "Aborting at cycle " << cycle << " with decode buffer " << decodeBuffer->getName() << " - source registers not available for operation " << currentInstruction.getInfo().getName() << std::endl;
|
|
currentInstruction = SuperscalarInstruction::Null;
|
|
break;
|
|
}
|
|
if (trace) std::cout << "; src = r" << currentInstruction.getSource() << std::endl;
|
|
}
|
|
//find a destination register that will be ready when this instruction executes
|
|
if (macroOpIndex == currentInstruction.getInfo().getDstOp()) {
|
|
int forward;
|
|
for (forward = 0; forward < LOOK_FORWARD_CYCLES && !currentInstruction.selectDestination(scheduleCycle, throwAwayCount > 0, registers, gen); ++forward) {
|
|
if (trace) std::cout << "; dst STALL at cycle " << cycle << std::endl;
|
|
++scheduleCycle;
|
|
++cycle;
|
|
}
|
|
if (forward == LOOK_FORWARD_CYCLES) { //throw instruction away
|
|
if (throwAwayCount < MAX_THROWAWAY_COUNT) {
|
|
throwAwayCount++;
|
|
macroOpIndex = currentInstruction.getInfo().getSize();
|
|
if (trace) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl;
|
|
//cycle = topCycle;
|
|
continue;
|
|
}
|
|
//abort this decode buffer
|
|
if (trace) std::cout << "Aborting at cycle " << cycle << " with decode buffer " << decodeBuffer->getName() << " - destination registers not available" << std::endl;
|
|
currentInstruction = SuperscalarInstruction::Null;
|
|
break;
|
|
}
|
|
if (trace) std::cout << "; dst = r" << currentInstruction.getDestination() << std::endl;
|
|
}
|
|
throwAwayCount = 0;
|
|
|
|
//recalculate when the instruction can be scheduled for execution based on operand availability
|
|
scheduleCycle = scheduleMop<true>(mop, portBusy, scheduleCycle, scheduleCycle);
|
|
|
|
if (scheduleCycle < 0) {
|
|
if (trace) std::cout << "Unable to map operation '" << mop.getName() << "' to execution port (cycle " << scheduleCycle << ")" << std::endl;
|
|
portsSaturated = true;
|
|
break;
|
|
}
|
|
|
|
//calculate when the result will be ready
|
|
depCycle = scheduleCycle + mop.getLatency();
|
|
|
|
//if this instruction writes the result, modify register information
|
|
// RegisterInfo.latency - which cycle the register will be ready
|
|
// RegisterInfo.lastOpGroup - the last operation that was applied to the register
|
|
// RegisterInfo.lastOpPar - the last operation source value (-1 = constant, 0-7 = register)
|
|
if (macroOpIndex == currentInstruction.getInfo().getResultOp()) {
|
|
int dst = currentInstruction.getDestination();
|
|
RegisterInfo& ri = registers[dst];
|
|
retireCycle = depCycle;
|
|
ri.latency = retireCycle;
|
|
ri.lastOpGroup = currentInstruction.getGroup();
|
|
ri.lastOpPar = currentInstruction.getGroupPar();
|
|
if (trace) std::cout << "; RETIRED at cycle " << retireCycle << std::endl;
|
|
}
|
|
codeSize += mop.getSize();
|
|
bufferIndex++;
|
|
macroOpIndex++;
|
|
macroOpCount++;
|
|
|
|
//terminating condition
|
|
if (scheduleCycle >= RANDOMX_SUPERSCALAR_LATENCY) {
|
|
portsSaturated = true;
|
|
}
|
|
cycle = topCycle;
|
|
|
|
//when all macro-ops of the current instruction have been issued, add the instruction into the program
|
|
if (macroOpIndex >= currentInstruction.getInfo().getSize()) {
|
|
currentInstruction.toInstr(prog(programSize++));
|
|
mulCount += isMultiplication(currentInstruction.getType());
|
|
}
|
|
}
|
|
++cycle;
|
|
}
|
|
|
|
double ipc = (macroOpCount / (double)retireCycle);
|
|
|
|
memset(prog.asicLatencies, 0, sizeof(prog.asicLatencies));
|
|
|
|
//Calculate ASIC latency:
|
|
//Assumes 1 cycle latency for all operations and unlimited parallelization.
|
|
for (int i = 0; i < programSize; ++i) {
|
|
Instruction& instr = prog(i);
|
|
int latDst = prog.asicLatencies[instr.dst] + 1;
|
|
int latSrc = instr.dst != instr.src ? prog.asicLatencies[instr.src] + 1 : 0;
|
|
prog.asicLatencies[instr.dst] = std::max(latDst, latSrc);
|
|
}
|
|
|
|
//address register is the register with the highest ASIC latency
|
|
int asicLatencyMax = 0;
|
|
int addressReg = 0;
|
|
for (int i = 0; i < 8; ++i) {
|
|
if (prog.asicLatencies[i] > asicLatencyMax) {
|
|
asicLatencyMax = prog.asicLatencies[i];
|
|
addressReg = i;
|
|
}
|
|
prog.cpuLatencies[i] = registers[i].latency;
|
|
}
|
|
|
|
prog.setSize(programSize);
|
|
prog.setAddressRegister(addressReg);
|
|
|
|
prog.cpuLatency = retireCycle;
|
|
prog.asicLatency = asicLatencyMax;
|
|
prog.codeSize = codeSize;
|
|
prog.macroOps = macroOpCount;
|
|
prog.decodeCycles = decodeCycle;
|
|
prog.ipc = ipc;
|
|
prog.mulCount = mulCount;
|
|
|
|
|
|
/*if(INFO) std::cout << "; ALU port utilization:" << std::endl;
|
|
if (INFO) std::cout << "; (* = in use, _ = idle)" << std::endl;
|
|
|
|
int portCycles = 0;
|
|
for (int i = 0; i < CYCLE_MAP_SIZE; ++i) {
|
|
std::cout << "; " << std::setw(3) << i << " ";
|
|
for (int j = 0; j < 3; ++j) {
|
|
std::cout << (portBusy[i][j] ? '*' : '_');
|
|
portCycles += !!portBusy[i][j];
|
|
}
|
|
std::cout << std::endl;
|
|
}*/
|
|
}
|
|
|
|
void executeSuperscalar(int_reg_t(&r)[8], SuperscalarProgram& prog, std::vector<uint64_t> *reciprocals) {
|
|
for (unsigned j = 0; j < prog.getSize(); ++j) {
|
|
Instruction& instr = prog(j);
|
|
switch ((SuperscalarInstructionType)instr.opcode)
|
|
{
|
|
case SuperscalarInstructionType::ISUB_R:
|
|
r[instr.dst] -= r[instr.src];
|
|
break;
|
|
case SuperscalarInstructionType::IXOR_R:
|
|
r[instr.dst] ^= r[instr.src];
|
|
break;
|
|
case SuperscalarInstructionType::IADD_RS:
|
|
r[instr.dst] += r[instr.src] << instr.getModShift();
|
|
break;
|
|
case SuperscalarInstructionType::IMUL_R:
|
|
r[instr.dst] *= r[instr.src];
|
|
break;
|
|
case SuperscalarInstructionType::IROR_C:
|
|
r[instr.dst] = rotr(r[instr.dst], instr.getImm32());
|
|
break;
|
|
case SuperscalarInstructionType::IADD_C7:
|
|
case SuperscalarInstructionType::IADD_C8:
|
|
case SuperscalarInstructionType::IADD_C9:
|
|
r[instr.dst] += signExtend2sCompl(instr.getImm32());
|
|
break;
|
|
case SuperscalarInstructionType::IXOR_C7:
|
|
case SuperscalarInstructionType::IXOR_C8:
|
|
case SuperscalarInstructionType::IXOR_C9:
|
|
r[instr.dst] ^= signExtend2sCompl(instr.getImm32());
|
|
break;
|
|
case SuperscalarInstructionType::IMULH_R:
|
|
r[instr.dst] = mulh(r[instr.dst], r[instr.src]);
|
|
break;
|
|
case SuperscalarInstructionType::ISMULH_R:
|
|
r[instr.dst] = smulh(r[instr.dst], r[instr.src]);
|
|
break;
|
|
case SuperscalarInstructionType::IMUL_RCP:
|
|
if (reciprocals != nullptr)
|
|
r[instr.dst] *= (*reciprocals)[instr.getImm32()];
|
|
else
|
|
r[instr.dst] *= randomx_reciprocal(instr.getImm32());
|
|
break;
|
|
default:
|
|
UNREACHABLE;
|
|
}
|
|
}
|
|
}
|
|
}
|