/* Copyright (c) 2019 tevador This file is part of RandomX. RandomX is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. RandomX is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with RandomX. If not, see. */ #include "blake2/blake2.h" #include "configuration.h" #include "Program.hpp" #include "blake2/endian.h"; #include #include #include #include #include #include "LightProgramGenerator.hpp" namespace RandomX { // Intel Ivy Bridge reference namespace LightInstructionType { //uOPs (decode) execution ports latency code size constexpr int IADD_RS = 0; //1 p01 1 4 constexpr int ISUB_R = 1; //1 p015 1 3 constexpr int ISUB_C = 2; //1 p015 3 7 constexpr int IMUL_R = 3; //1 p1 3 4 constexpr int IMUL_C = 4; //1 p1 3 7 constexpr int IMULH_R = 5; //1+2+1 0+(p1,p5)+0 3 3+3+3 constexpr int ISMULH_R = 6; //1+2+1 0+(p1,p5)+0 3 3+3+3 constexpr int IMUL_RCP = 7; //1+1 p015+p1 4 10+4 constexpr int IXOR_R = 8; //1 p015 1 3 constexpr int IXOR_C = 9; //1 p015 1 7 constexpr int IROR_R = 10; //1+2 0+(p0,p5) 1 3+3 constexpr int IROR_C = 11; //1 p05 1 4 constexpr int COND_R = 12; //1+1+1+1+1+1 p015+p5+0+p015+p05+p015 3 7+13+3+7+3+3 constexpr int COUNT = 13; } namespace LightInstructionOpcode { constexpr int IADD_RS = 0; constexpr int IADD_RC = RANDOMX_FREQ_IADD_RS + RANDOMX_FREQ_IADD_M; constexpr int ISUB_R = IADD_RC + RANDOMX_FREQ_IADD_RC; constexpr int IMUL_9C = ISUB_R + RANDOMX_FREQ_ISUB_R + RANDOMX_FREQ_ISUB_M; constexpr int IMUL_R = IMUL_9C + RANDOMX_FREQ_IMUL_9C; constexpr int IMULH_R = IMUL_R + RANDOMX_FREQ_IMUL_R + RANDOMX_FREQ_IMUL_M; constexpr int ISMULH_R = IMULH_R + RANDOMX_FREQ_IMULH_R + RANDOMX_FREQ_IMULH_M; constexpr int IMUL_RCP = ISMULH_R + RANDOMX_FREQ_ISMULH_R + RANDOMX_FREQ_ISMULH_M; constexpr int IXOR_R = IMUL_RCP + RANDOMX_FREQ_IMUL_RCP + RANDOMX_FREQ_INEG_R; constexpr int IROR_R = IXOR_R + RANDOMX_FREQ_IXOR_R + RANDOMX_FREQ_IXOR_M; constexpr int COND_R = IROR_R + RANDOMX_FREQ_IROR_R + RANDOMX_FREQ_IROL_R + RANDOMX_FREQ_ISWAP_R + RANDOMX_FREQ_FSWAP_R + RANDOMX_FREQ_FADD_R + RANDOMX_FREQ_FADD_M + RANDOMX_FREQ_FSUB_R + RANDOMX_FREQ_FSUB_M + RANDOMX_FREQ_FSCAL_R + RANDOMX_FREQ_FMUL_R + RANDOMX_FREQ_FDIV_M + RANDOMX_FREQ_FSQRT_R; } static bool isMul(int type) { return type == LightInstructionType::IMUL_R || type == LightInstructionType::IMUL_C || type == LightInstructionType::IMULH_R || type == LightInstructionType::ISMULH_R || type == LightInstructionType::IMUL_RCP; } const int lightInstructionOpcode[] = { LightInstructionOpcode::IADD_RS, LightInstructionOpcode::ISUB_R, //ISUB_R LightInstructionOpcode::ISUB_R, //ISUB_R LightInstructionOpcode::IMUL_R, //IMUL_R LightInstructionOpcode::IMUL_R, //IMUL_C LightInstructionOpcode::IMULH_R, LightInstructionOpcode::ISMULH_R, LightInstructionOpcode::IMUL_RCP, LightInstructionOpcode::IXOR_R, //IXOR_R LightInstructionOpcode::IXOR_R, //IXOR_C LightInstructionOpcode::IROR_R, //IROR_R LightInstructionOpcode::IROR_R, //IROR_C LightInstructionOpcode::COND_R }; namespace ExecutionPort { using type = int; constexpr type Null = 0; constexpr type P0 = 1; constexpr type P1 = 2; constexpr type P5 = 3; constexpr type P01 = 4; constexpr type P05 = 5; constexpr type P015 = 6; } Blake2Generator::Blake2Generator(const void* seed, int nonce) : dataIndex(sizeof(data)) { memset(data, 0, sizeof(data)); memcpy(data, seed, SeedSize); store32(&data[60], nonce); } uint8_t Blake2Generator::getByte() { checkData(1); return data[dataIndex++]; } uint32_t Blake2Generator::getInt32() { checkData(4); auto ret = load32(&data[dataIndex]); dataIndex += 4; return ret; } void Blake2Generator::checkData(const size_t bytesNeeded) { if (dataIndex + bytesNeeded > sizeof(data)) { blake2b(data, sizeof(data), data, sizeof(data), nullptr, 0); dataIndex = 0; } } class RegisterInfo { public: RegisterInfo() : latency(0), lastOpGroup(-1), lastOpPar(-1), value(0) {} int latency; int lastOpGroup; int lastOpPar; int value; }; class MacroOp { public: MacroOp(const char* name, int size) : name_(name), size_(size), latency_(0), uop1_(ExecutionPort::Null), uop2_(ExecutionPort::Null) {} MacroOp(const char* name, int size, int latency, ExecutionPort::type uop) : name_(name), size_(size), latency_(latency), uop1_(uop), uop2_(ExecutionPort::Null) {} MacroOp(const char* name, int size, int latency, ExecutionPort::type uop1, ExecutionPort::type uop2) : name_(name), size_(size), latency_(latency), uop1_(uop1), uop2_(uop2) {} MacroOp(const MacroOp& parent, bool dependent) : name_(parent.name_), size_(parent.size_), latency_(parent.latency_), uop1_(parent.uop1_), uop2_(parent.uop2_), dependent_(dependent) {} const char* getName() const { return name_; } int getSize() const { return size_; } int getLatency() const { return latency_; } ExecutionPort::type getUop1() const { return uop1_; } ExecutionPort::type getUop2() const { return uop2_; } bool isSimple() const { return uop2_ == ExecutionPort::Null; } bool isEliminated() const { return uop1_ == ExecutionPort::Null; } bool isDependent() const { return dependent_; } int getCycle() const { return cycle_; } void setCycle(int cycle) { cycle_ = cycle; } MacroOp* getSrcDep() const { return depSrc_; } void setSrcDep(MacroOp* src) { depSrc_ = src; } MacroOp* getDstDep() const { return depDst_; } void setDstDep(MacroOp* dst) { depDst_ = dst; } static const MacroOp Add_rr; static const MacroOp Add_ri; static const MacroOp Lea_sib; static const MacroOp Sub_rr; static const MacroOp Sub_ri; static const MacroOp Imul_rr; static const MacroOp Imul_rri; static const MacroOp Imul_r; static const MacroOp Mul_r; static const MacroOp Mov_rr; static const MacroOp Mov_ri64; static const MacroOp Xor_rr; static const MacroOp Xor_ri; static const MacroOp Ror_rcl; static const MacroOp Ror_ri; static const MacroOp TestJz_fused; static const MacroOp Xor_self; static const MacroOp Cmp_ri; static const MacroOp Setcc_r; private: const char* name_; int size_; int latency_; ExecutionPort::type uop1_; ExecutionPort::type uop2_; int cycle_; bool dependent_ = false; MacroOp* depDst_ = nullptr; MacroOp* depSrc_ = nullptr; }; const MacroOp MacroOp::Add_rr = MacroOp("add r,r", 3, 1, ExecutionPort::P015); const MacroOp MacroOp::Add_ri = MacroOp("add r,i", 7, 1, ExecutionPort::P015); const MacroOp MacroOp::Lea_sib = MacroOp("lea r,r+r*s", 4, 1, ExecutionPort::P01); const MacroOp MacroOp::Sub_rr = MacroOp("sub r,r", 3, 1, ExecutionPort::P015); const MacroOp MacroOp::Sub_ri = MacroOp("sub r,i", 7, 1, ExecutionPort::P015); const MacroOp MacroOp::Imul_rr = MacroOp("imul r,r", 4, 3, ExecutionPort::P1); const MacroOp MacroOp::Imul_rri = MacroOp("imul r,r,i", 7, 3, ExecutionPort::P1); const MacroOp MacroOp::Imul_r = MacroOp("imul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5); const MacroOp MacroOp::Mul_r = MacroOp("mul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5); const MacroOp MacroOp::Mov_rr = MacroOp("mov r,r", 3); const MacroOp MacroOp::Mov_ri64 = MacroOp("mov rax,i64", 10, 1, ExecutionPort::P015); const MacroOp MacroOp::Xor_rr = MacroOp("xor r,r", 3, 1, ExecutionPort::P015); const MacroOp MacroOp::Xor_ri = MacroOp("xor r,i", 7, 1, ExecutionPort::P015); const MacroOp MacroOp::Ror_rcl = MacroOp("ror r,cl", 3, 1, ExecutionPort::P0, ExecutionPort::P5); const MacroOp MacroOp::Ror_ri = MacroOp("ror r,i", 4, 1, ExecutionPort::P05); const MacroOp MacroOp::Xor_self = MacroOp("xor rcx,rcx", 3); const MacroOp MacroOp::Cmp_ri = MacroOp("cmp r,i", 7, 1, ExecutionPort::P015); const MacroOp MacroOp::Setcc_r = MacroOp("setcc cl", 3, 1, ExecutionPort::P05); const MacroOp MacroOp::TestJz_fused = MacroOp("testjz r,i", 13, 0, ExecutionPort::P5); const MacroOp IMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Mul_r, MacroOp::Mov_rr }; const MacroOp ISMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Imul_r, MacroOp::Mov_rr }; const MacroOp IMUL_RCP_ops_array[] = { MacroOp::Mov_ri64, MacroOp(MacroOp::Imul_rr, true) }; const MacroOp IROR_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Ror_rcl }; const MacroOp COND_R_ops_array[] = { MacroOp::Add_ri, MacroOp(MacroOp::TestJz_fused, true), MacroOp::Xor_self, MacroOp::Cmp_ri, MacroOp(MacroOp::Setcc_r, true), MacroOp(MacroOp::Add_rr, true) }; class LightInstructionInfo { public: LightInstructionInfo(const char* name, int type, const MacroOp& op, int srcOp) : name_(name), type_(type), latency_(op.getLatency()), srcOp_(srcOp) { ops_.push_back(MacroOp(op)); } template LightInstructionInfo(const char* name, int type, const MacroOp(&arr)[N], int resultOp, int dstOp, int srcOp) : name_(name), type_(type), latency_(0), resultOp_(resultOp), dstOp_(dstOp), srcOp_(srcOp) { for (unsigned i = 0; i < N; ++i) { ops_.push_back(MacroOp(arr[i])); latency_ += ops_.back().getLatency(); } static_assert(N > 1, "Invalid array size"); } template LightInstructionInfo(const char* name, int type, const MacroOp*(&arr)[N], int latency, int resultOp, int dstOp, int srcOp) : name_(name), type_(type), latency_(latency), resultOp_(resultOp), dstOp_(dstOp), srcOp_(srcOp) { for (unsigned i = 0; i < N; ++i) { ops_.push_back(MacroOp(arr[i])); if (arr[i].isDependent()) { ops_[i].setSrcDep(&ops_[i - 1]); } } static_assert(N > 1, "Invalid array size"); } const char* getName() const { return name_; } int getSize() const { return ops_.size(); } bool isSimple() const { return getSize() == 1; } int getLatency() const { return latency_; } MacroOp& getOp(int index) { return ops_[index]; } int getType() const { return type_; } int getResultOp() const { return resultOp_; } int getDstOp() const { return dstOp_; } int getSrcOp() const { return srcOp_; } static const LightInstructionInfo IADD_RS; static const LightInstructionInfo ISUB_R; static const LightInstructionInfo ISUB_C; static const LightInstructionInfo IMUL_R; static const LightInstructionInfo IMUL_C; static const LightInstructionInfo IMULH_R; static const LightInstructionInfo ISMULH_R; static const LightInstructionInfo IMUL_RCP; static const LightInstructionInfo IXOR_R; static const LightInstructionInfo IXOR_C; static const LightInstructionInfo IROR_R; static const LightInstructionInfo IROR_C; static const LightInstructionInfo COND_R; static const LightInstructionInfo NOP; private: const char* name_; int type_; std::vector ops_; int latency_; int resultOp_ = 0; int dstOp_ = 0; int srcOp_; LightInstructionInfo(const char* name) : name_(name), type_(-1), latency_(0) {} }; const LightInstructionInfo LightInstructionInfo::IADD_RS = LightInstructionInfo("IADD_RS", LightInstructionType::IADD_RS, MacroOp::Lea_sib, 0); const LightInstructionInfo LightInstructionInfo::ISUB_R = LightInstructionInfo("ISUB_R", LightInstructionType::ISUB_R, MacroOp::Sub_rr, 0); const LightInstructionInfo LightInstructionInfo::ISUB_C = LightInstructionInfo("ISUB_C", LightInstructionType::ISUB_C, MacroOp::Sub_ri, -1); const LightInstructionInfo LightInstructionInfo::IMUL_R = LightInstructionInfo("IMUL_R", LightInstructionType::IMUL_R, MacroOp::Imul_rr, 0); const LightInstructionInfo LightInstructionInfo::IMUL_C = LightInstructionInfo("IMUL_C", LightInstructionType::IMUL_C, MacroOp::Imul_rri, -1); const LightInstructionInfo LightInstructionInfo::IMULH_R = LightInstructionInfo("IMULH_R", LightInstructionType::IMULH_R, IMULH_R_ops_array, 1, 0, 1); const LightInstructionInfo LightInstructionInfo::ISMULH_R = LightInstructionInfo("ISMULH_R", LightInstructionType::ISMULH_R, ISMULH_R_ops_array, 1, 0, 1); const LightInstructionInfo LightInstructionInfo::IMUL_RCP = LightInstructionInfo("IMUL_RCP", LightInstructionType::IMUL_RCP, IMUL_RCP_ops_array, 1, 1, -1); const LightInstructionInfo LightInstructionInfo::IXOR_R = LightInstructionInfo("IXOR_R", LightInstructionType::IXOR_R, MacroOp::Xor_rr, 0); const LightInstructionInfo LightInstructionInfo::IXOR_C = LightInstructionInfo("IXOR_C", LightInstructionType::IXOR_C, MacroOp::Xor_ri, -1); const LightInstructionInfo LightInstructionInfo::IROR_R = LightInstructionInfo("IROR_R", LightInstructionType::IROR_R, IROR_R_ops_array, 1, 1, 0); const LightInstructionInfo LightInstructionInfo::IROR_C = LightInstructionInfo("IROR_C", LightInstructionType::IROR_C, MacroOp::Ror_ri, -1); const LightInstructionInfo LightInstructionInfo::COND_R = LightInstructionInfo("COND_R", LightInstructionType::COND_R, COND_R_ops_array, 5, 5, 3); const LightInstructionInfo LightInstructionInfo::NOP = LightInstructionInfo("NOP"); const int buffer0[] = { 3, 3, 10 }; const int buffer1[] = { 7, 3, 3, 3 }; const int buffer2[] = { 3, 3, 3, 7 }; const int buffer4[] = { 4, 4, 4, 4 }; const int buffer5[] = { 3, 7, 3, 3 }; const int buffer6[] = { 3, 3, 7, 3 }; const int buffer7[] = { 13, 3 }; class DecoderBuffer { public: static const DecoderBuffer Default; template DecoderBuffer(const char* name, int index, const int(&arr)[N]) : name_(name), index_(index), counts_(arr), opsCount_(N) {} const int* getCounts() const { return counts_; } int getSize() const { return opsCount_; } int getIndex() const { return index_; } const char* getName() const { return name_; } const DecoderBuffer* fetchNext(int prevType, Blake2Generator& gen) const { if (prevType == LightInstructionType::IMULH_R || prevType == LightInstructionType::ISMULH_R) return &decodeBuffer3310; //2-1-1 decode if (index_ == 0) { return &decodeBuffer4444; //IMUL_RCP end } /*if (index_ == 2) { return &decodeBuffer133; //COND_R middle }*/ if (index_ == 7) { return &decodeBuffer7333; //COND_R end } return fetchNextDefault(gen); } private: const char* name_; int index_; const int* counts_; int opsCount_; DecoderBuffer() : index_(-1) {} static const DecoderBuffer decodeBuffer3310; static const DecoderBuffer decodeBuffer7333; static const DecoderBuffer decodeBuffer3337; static const DecoderBuffer decodeBuffer4444; static const DecoderBuffer decodeBuffer3733; static const DecoderBuffer decodeBuffer3373; static const DecoderBuffer decodeBuffer133; static const DecoderBuffer* decodeBuffers[7]; const DecoderBuffer* fetchNextDefault(Blake2Generator& gen) const { int select; do { select = gen.getByte() & 7; } while (select == 7); return decodeBuffers[select]; } }; const DecoderBuffer DecoderBuffer::decodeBuffer3310 = DecoderBuffer("3,3,10", 0, buffer0); const DecoderBuffer DecoderBuffer::decodeBuffer7333 = DecoderBuffer("7,3,3,3", 1, buffer1); const DecoderBuffer DecoderBuffer::decodeBuffer3337 = DecoderBuffer("3,3,3,7", 2, buffer2); const DecoderBuffer DecoderBuffer::decodeBuffer4444 = DecoderBuffer("4,4,4,4", 4, buffer4); const DecoderBuffer DecoderBuffer::decodeBuffer3733 = DecoderBuffer("3,7,3,3", 5, buffer5); const DecoderBuffer DecoderBuffer::decodeBuffer3373 = DecoderBuffer("3,3,7,3", 6, buffer6); const DecoderBuffer DecoderBuffer::decodeBuffer133 = DecoderBuffer("13,3", 7, buffer7); const DecoderBuffer* DecoderBuffer::decodeBuffers[7] = { &DecoderBuffer::decodeBuffer3310, &DecoderBuffer::decodeBuffer7333, &DecoderBuffer::decodeBuffer3337, &DecoderBuffer::decodeBuffer4444, &DecoderBuffer::decodeBuffer4444, &DecoderBuffer::decodeBuffer3733, &DecoderBuffer::decodeBuffer3373, }; const DecoderBuffer DecoderBuffer::Default = DecoderBuffer(); const LightInstructionInfo* slot_3[] = { &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R }; const LightInstructionInfo* slot_3L[] = { &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IMULH_R, &LightInstructionInfo::ISMULH_R }; const LightInstructionInfo* slot_3C[] = { &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IROR_R, &LightInstructionInfo::IXOR_R }; const LightInstructionInfo* slot_4[] = { &LightInstructionInfo::IMUL_R, &LightInstructionInfo::IROR_C, &LightInstructionInfo::IADD_RS, &LightInstructionInfo::IMUL_R }; const LightInstructionInfo* slot_7[] = { &LightInstructionInfo::ISUB_C, &LightInstructionInfo::IMUL_C, &LightInstructionInfo::IXOR_C, &LightInstructionInfo::ISUB_C }; const LightInstructionInfo* slot_7L = &LightInstructionInfo::COND_R; const LightInstructionInfo* slot_10 = &LightInstructionInfo::IMUL_RCP; static bool selectRegister(std::vector& availableRegisters, Blake2Generator& gen, int& reg) { int index; if (availableRegisters.size() == 0) return false; //throw std::runtime_error("No available registers"); if (availableRegisters.size() > 1) { index = gen.getInt32() % availableRegisters.size(); } else { index = 0; } reg = availableRegisters[index]; return true; } class LightInstruction { public: void toInstr(Instruction& instr) { instr.opcode = lightInstructionOpcode[getType()]; instr.dst = dst_; instr.src = src_ >= 0 ? src_ : dst_; instr.mod = mod_; instr.setImm32(imm32_); } static LightInstruction createForSlot(Blake2Generator& gen, int slotSize, bool isLast = false, bool complex = false) { switch (slotSize) { case 3: if (isLast) { return create(slot_3L[gen.getByte() & 3], gen); } else if (complex) { return create(slot_3C[gen.getByte() & 3], gen); } else { return create(slot_3[gen.getByte() & 1], gen); } case 4: return create(slot_4[gen.getByte() & 3], gen); case 7: if (false && isLast) { return create(slot_7L, gen); } else { return create(slot_7[gen.getByte() & 3], gen); } case 10: return create(slot_10, gen); default: throw std::runtime_error("Invalid slot"); } } static LightInstruction create(const LightInstructionInfo* info, Blake2Generator& gen) { LightInstruction li(info); switch (info->getType()) { case LightInstructionType::IADD_RS: { li.mod_ = gen.getByte(); li.imm32_ = 0; li.opGroup_ = LightInstructionType::IADD_RS; li.groupParIsSource_ = true; } break; case LightInstructionType::ISUB_R: { li.mod_ = 0; li.imm32_ = 0; li.opGroup_ = LightInstructionType::IADD_RS; li.groupParIsSource_ = true; } break; case LightInstructionType::ISUB_C: { li.mod_ = 0; li.imm32_ = gen.getInt32(); li.opGroup_ = LightInstructionType::ISUB_C; li.opGroupPar_ = -1; } break; case LightInstructionType::IMUL_R: { li.mod_ = 0; li.imm32_ = 0; li.opGroup_ = LightInstructionType::IMUL_R; li.opGroupPar_ = gen.getInt32(); } break; case LightInstructionType::IMUL_C: { li.mod_ = 0; li.imm32_ = gen.getInt32(); li.opGroup_ = LightInstructionType::IMUL_C; li.opGroupPar_ = -1; } break; case LightInstructionType::IMULH_R: { li.canReuse_ = true; li.mod_ = 0; li.imm32_ = 0; li.opGroup_ = LightInstructionType::IMULH_R; li.opGroupPar_ = gen.getInt32(); } break; case LightInstructionType::ISMULH_R: { li.canReuse_ = true; li.mod_ = 0; li.imm32_ = 0; li.opGroup_ = LightInstructionType::ISMULH_R; li.opGroupPar_ = gen.getInt32(); } break; case LightInstructionType::IMUL_RCP: { li.mod_ = 0; li.imm32_ = gen.getInt32(); li.opGroup_ = LightInstructionType::IMUL_C; li.opGroupPar_ = -1; } break; case LightInstructionType::IXOR_R: { li.mod_ = 0; li.imm32_ = 0; li.opGroup_ = LightInstructionType::IXOR_R; li.groupParIsSource_ = true; } break; case LightInstructionType::IXOR_C: { li.mod_ = 0; li.imm32_ = gen.getInt32(); li.opGroup_ = LightInstructionType::IXOR_R; li.opGroupPar_ = -1; } break; case LightInstructionType::IROR_R: { li.mod_ = 0; li.imm32_ = 0; li.opGroup_ = LightInstructionType::IROR_R; li.opGroupPar_ = -1; } break; case LightInstructionType::IROR_C: { li.mod_ = 0; do { li.imm32_ = gen.getByte(); } while ((li.imm32_ & 63) == 0); li.opGroup_ = LightInstructionType::IROR_R; li.opGroupPar_ = -1; } break; case LightInstructionType::COND_R: { li.canReuse_ = true; li.mod_ = gen.getByte(); li.imm32_ = gen.getInt32(); li.opGroup_ = LightInstructionType::COND_R; li.opGroupPar_ = li.imm32_; } break; default: break; } return li; } bool selectDestination(int cycle, RegisterInfo (®isters)[8], Blake2Generator& gen) { std::vector availableRegisters; for (unsigned i = 0; i < 8; ++i) { if (registers[i].latency <= cycle && (canReuse_ || i != src_) && (registers[i].lastOpGroup != opGroup_ || registers[i].lastOpPar != opGroupPar_) && (info_.getType() != LightInstructionType::IADD_RS || i != 5)) availableRegisters.push_back(i); } return selectRegister(availableRegisters, gen, dst_); } bool selectSource(int cycle, RegisterInfo(®isters)[8], Blake2Generator& gen) { std::vector availableRegisters; for (unsigned i = 0; i < 8; ++i) { if (registers[i].latency <= cycle) availableRegisters.push_back(i); } if (availableRegisters.size() == 2 && info_.getType() == LightInstructionType::IADD_RS) { if (availableRegisters[0] == 5 || availableRegisters[1] == 5) { opGroupPar_ = src_ = 5; return true; } } if (selectRegister(availableRegisters, gen, src_)) { if (groupParIsSource_) opGroupPar_ = src_; return true; } return false; } int getType() { return info_.getType(); } int getSource() { return src_; } int getDestination() { return dst_; } int getGroup() { return opGroup_; } int getGroupPar() { return opGroupPar_; } LightInstructionInfo& getInfo() { return info_; } static const LightInstruction Null; private: LightInstructionInfo info_; int src_ = -1; int dst_ = -1; int mod_; uint32_t imm32_; int opGroup_; int opGroupPar_; bool canReuse_ = false; bool groupParIsSource_ = false; LightInstruction(const LightInstructionInfo* info) : info_(*info) { for (unsigned i = 0; i < info_.getSize(); ++i) { MacroOp& mop = info_.getOp(i); if (mop.isDependent()) { mop.setSrcDep(&info_.getOp(i - 1)); } } } }; const LightInstruction LightInstruction::Null = LightInstruction(&LightInstructionInfo::NOP); constexpr int ALU_COUNT_MUL = 1; constexpr int ALU_COUNT = 3; constexpr int LIGHT_OPCODE_BITS = 4; constexpr int V4_SRC_INDEX_BITS = 3; constexpr int V4_DST_INDEX_BITS = 3; constexpr int CYCLE_MAP_SIZE = RANDOMX_LPROG_LATENCY + 3; constexpr bool TRACE = false; static int blakeCounter = 0; template static int scheduleUop(const MacroOp& mop, ExecutionPort::type(&portBusy)[CYCLE_MAP_SIZE][3], int cycle, int depCycle) { if (mop.isDependent()) { cycle = std::max(cycle, depCycle); } if (mop.isEliminated()) { if (commit) if (TRACE) std::cout << "; (eliminated)" << std::endl; return cycle; } else if (mop.isSimple()) { if (mop.getUop1() <= ExecutionPort::P5) { for (; cycle < CYCLE_MAP_SIZE; ++cycle) { if (!portBusy[cycle][mop.getUop1() - 1]) { if (commit) { if (TRACE) std::cout << "; P" << mop.getUop1() - 1 << " at cycle " << cycle << std::endl; portBusy[cycle][mop.getUop1() - 1] = mop.getUop1(); } return cycle; } } } else if (mop.getUop1() == ExecutionPort::P01) { for (; cycle < CYCLE_MAP_SIZE; ++cycle) { if (!portBusy[cycle][0]) { if (commit) { if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl; portBusy[cycle][0] = mop.getUop1(); } return cycle; } if (!portBusy[cycle][1]) { if (commit) { if (TRACE) std::cout << "; P1 at cycle " << cycle << std::endl; portBusy[cycle][1] = mop.getUop1(); } return cycle; } } } else if (mop.getUop1() == ExecutionPort::P05) { for (; cycle < CYCLE_MAP_SIZE; ++cycle) { if (!portBusy[cycle][2]) { if (commit) { if (TRACE) std::cout << "; P2 at cycle " << cycle << std::endl; portBusy[cycle][2] = mop.getUop1(); } return cycle; } if (!portBusy[cycle][0]) { if (commit) { if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl; portBusy[cycle][0] = mop.getUop1(); } return cycle; } } } else { for (; cycle < CYCLE_MAP_SIZE; ++cycle) { if (!portBusy[cycle][2]) { if (commit) { if (TRACE) std::cout << "; P2 at cycle " << cycle << std::endl; portBusy[cycle][2] = mop.getUop1(); } return cycle; } if (!portBusy[cycle][0]) { if (commit) { if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl; portBusy[cycle][0] = mop.getUop1(); } return cycle; } if (!portBusy[cycle][1]) { if (commit) { if (TRACE) std::cout << "; P1 at cycle " << cycle << std::endl; portBusy[cycle][1] = mop.getUop1(); } return cycle; } } } } else { for (; cycle < CYCLE_MAP_SIZE; ++cycle) { if (!portBusy[cycle][mop.getUop1() - 1] && !portBusy[cycle][mop.getUop2() - 1]) { if (commit) { if (TRACE) std::cout << "; P" << mop.getUop1() - 1 << " P" << mop.getUop2() - 1 << " at cycle " << cycle << std::endl; portBusy[cycle][mop.getUop1() - 1] = mop.getUop1(); portBusy[cycle][mop.getUop2() - 1] = mop.getUop2(); } return cycle; } } } if (TRACE) std::cout << "Unable to map operation '" << mop.getName() << "' to execution port (cycle " << cycle << ")" << std::endl; return -1; } // If we don't have enough data available, generate more static FORCE_INLINE void check_data(size_t& data_index, const size_t bytes_needed, uint8_t* data, const size_t data_size) { if (data_index + bytes_needed > data_size) { std::cout << "Calling Blake " << (++blakeCounter) << std::endl; blake2b(data, data_size, data, data_size, nullptr, 0); data_index = 0; } } double generateLightProg2(LightProgram& prog, Blake2Generator& gen) { ExecutionPort::type portBusy[CYCLE_MAP_SIZE][3]; memset(portBusy, 0, sizeof(portBusy)); RegisterInfo registers[8]; std::vector instructions; const DecoderBuffer* fetchLine = &DecoderBuffer::Default; LightInstruction currentInstruction = LightInstruction::Null; int instrIndex = 0; int codeSize = 0; int macroOpCount = 0; int cycle = 0; int depCycle = 0; int retireCycle = 0; int mopIndex = 0; bool portsSaturated = false; int outIndex = 0; int attempts = 0; int mulCount = 0; constexpr int MAX_ATTEMPTS = 4; while(!portsSaturated) { fetchLine = fetchLine->fetchNext(currentInstruction.getType(), gen); if (TRACE) std::cout << "; ------------- fetch cycle " << cycle << " (" << fetchLine->getName() << ")" << std::endl; mopIndex = 0; while (mopIndex < fetchLine->getSize()) { int topCycle = cycle; if (instrIndex >= currentInstruction.getInfo().getSize()) { if (portsSaturated) break; currentInstruction = LightInstruction::createForSlot(gen, fetchLine->getCounts()[mopIndex], fetchLine->getSize() == mopIndex + 1, fetchLine->getIndex() == 0 && mopIndex == 0); instrIndex = 0; if (TRACE) std::cout << "; " << currentInstruction.getInfo().getName() << std::endl; } MacroOp& mop = currentInstruction.getInfo().getOp(instrIndex); if (fetchLine->getCounts()[mopIndex] != mop.getSize()) { if (TRACE) std::cout << "ERROR instruction " << mop.getName() << " doesn't fit into slot of size " << fetchLine->getCounts()[mopIndex] << std::endl; return DBL_MIN; } if (TRACE) std::cout << mop.getName() << " "; int scheduleCycle = scheduleUop(mop, portBusy, cycle, depCycle); mop.setCycle(scheduleCycle); if (scheduleCycle < 0) { if (TRACE) std::cout << "; Failed at cycle " << cycle << std::endl; return DBL_MIN; } if (instrIndex == currentInstruction.getInfo().getSrcOp()) { for (attempts = 0; attempts < MAX_ATTEMPTS && !currentInstruction.selectSource(scheduleCycle, registers, gen); ++attempts) { if (TRACE) std::cout << "; src STALL at cycle " << cycle << std::endl; ++scheduleCycle; ++cycle; } if (attempts == MAX_ATTEMPTS) { //throw instruction away //cycle = topCycle; instrIndex = currentInstruction.getInfo().getSize(); if (TRACE) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl; continue; } if (TRACE) std::cout << "; src = r" << currentInstruction.getSource() << std::endl; } if (instrIndex == currentInstruction.getInfo().getDstOp()) { for (attempts = 0; attempts < MAX_ATTEMPTS && !currentInstruction.selectDestination(scheduleCycle, registers, gen); ++attempts) { if (TRACE) std::cout << "; dst STALL at cycle " << cycle << std::endl; ++scheduleCycle; ++cycle; } if (attempts == MAX_ATTEMPTS) { //throw instruction away //cycle = topCycle; instrIndex = currentInstruction.getInfo().getSize(); if (TRACE) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl; continue; } if (TRACE) std::cout << "; dst = r" << currentInstruction.getDestination() << std::endl; } scheduleCycle = scheduleUop(mop, portBusy, scheduleCycle, scheduleCycle); depCycle = scheduleCycle + mop.getLatency(); if (instrIndex == currentInstruction.getInfo().getResultOp()) { int dst = currentInstruction.getDestination(); RegisterInfo& ri = registers[dst]; retireCycle = depCycle; ri.latency = retireCycle; ri.lastOpGroup = currentInstruction.getGroup(); ri.lastOpPar = currentInstruction.getGroupPar(); if (TRACE) std::cout << "; RETIRED at cycle " << retireCycle << std::endl; } codeSize += mop.getSize(); mopIndex++; instrIndex++; macroOpCount++; if (scheduleCycle >= RANDOMX_LPROG_LATENCY) { portsSaturated = true; } cycle = topCycle; if (instrIndex >= currentInstruction.getInfo().getSize()) { currentInstruction.toInstr(prog(outIndex++)); mulCount += isMul(currentInstruction.getType()); } } ++cycle; } std::cout << "; ALU port utilization:" << std::endl; std::cout << "; (* = in use, _ = idle)" << std::endl; int portCycles = 0; /*for (int i = 0; i < CYCLE_MAP_SIZE; ++i) { std::cout << "; " << std::setw(3) << i << " "; for (int j = 0; j < 3; ++j) { std::cout << (portBusy[i][j] ? '*' : '_'); portCycles += !!portBusy[i][j]; } std::cout << std::endl; }*/ double ipc = (macroOpCount / (double)retireCycle); std::cout << "; code size " << codeSize << " bytes" << std::endl; std::cout << "; x86 macro-ops: " << macroOpCount << std::endl; std::cout << "; RandomX instructions: " << outIndex << std::endl; std::cout << "; Execution time: " << retireCycle << " cycles" << std::endl; std::cout << "; IPC = " << ipc << std::endl; std::cout << "; Port-cycles: " << portCycles << std::endl; std::cout << "; Multiplications: " << mulCount << std::endl; int asicLatency[8]; memset(asicLatency, 0, sizeof(asicLatency)); for (int i = 0; i < outIndex; ++i) { Instruction& instr = prog(i); int latDst = asicLatency[instr.dst] + 1; int latSrc = instr.dst != instr.src ? asicLatency[instr.src] + 1 : 0; asicLatency[instr.dst] = std::max(latDst, latSrc); } int asicLatencyFinal = 0; int addressReg = 0; for (int i = 0; i < 8; ++i) { if (asicLatency[i] > asicLatencyFinal) { asicLatencyFinal = asicLatency[i]; addressReg = i; } } std::cout << "; ASIC latency: " << asicLatencyFinal << std::endl; std::cout << "; ASIC latency:" << std::endl; for (int i = 0; i < 8; ++i) { std::cout << "; r" << i << " = " << asicLatency[i] << std::endl; } std::cout << "; CPU latency:" << std::endl; for (int i = 0; i < 8; ++i) { std::cout << "; r" << i << " = " << registers[i].latency << std::endl; } prog.setSize(outIndex); prog.setAddressRegister(addressReg); return addressReg; } }