/*
Copyright (c) 2018 tevador
This file is part of RandomX.
RandomX is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RandomX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RandomX. If not, see.
*/
//#define TRACE
//#define FPUCHECK
#define RANDOMX_JUMP
#include "InterpretedVirtualMachine.hpp"
#include "dataset.hpp"
#include "Cache.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include "intrinPortable.h"
#include "reciprocal.h"
#ifdef STATS
#include
#endif
#include "superscalarGenerator.hpp"
#ifdef FPUCHECK
constexpr bool fpuCheck = true;
#else
constexpr bool fpuCheck = false;
#endif
namespace RandomX {
template
void InterpretedVirtualMachine::setDataset(dataset_t ds, uint64_t size, SuperscalarProgram(&programs)[RANDOMX_CACHE_ACCESSES]) {
mem.ds = ds;
readDataset = &datasetReadLight;
datasetRange = (size - RANDOMX_DATASET_SIZE + CacheLineSize) / CacheLineSize;
if(superscalar)
precompileSuperscalar(programs);
}
template void InterpretedVirtualMachine::setDataset(dataset_t ds, uint64_t size, SuperscalarProgram(&programs)[RANDOMX_CACHE_ACCESSES]);
template void InterpretedVirtualMachine::setDataset(dataset_t ds, uint64_t size, SuperscalarProgram(&programs)[RANDOMX_CACHE_ACCESSES]);
template
void InterpretedVirtualMachine::initialize() {
VirtualMachine::initialize();
for (unsigned i = 0; i < RANDOMX_PROGRAM_SIZE; ++i) {
program(i).src %= RegistersCount;
program(i).dst %= RegistersCount;
}
}
template void InterpretedVirtualMachine::initialize();
template void InterpretedVirtualMachine::initialize();
template
void InterpretedVirtualMachine::executeBytecode(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) {
for (int ic = 0; ic < RANDOMX_PROGRAM_SIZE; ++ic) {
executeBytecode(ic, r, f, e, a);
}
}
template void InterpretedVirtualMachine::executeBytecode(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]);
template void InterpretedVirtualMachine::executeBytecode(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]);
static void print(int_reg_t r) {
std::cout << std::hex << std::setw(16) << std::setfill('0') << r << std::endl;
}
static void print(__m128d f) {
uint64_t lo = *(((uint64_t*)&f) + 0);
uint64_t hi = *(((uint64_t*)&f) + 1);
std::cout << std::hex << std::setw(16) << std::setfill('0') << hi << '-' << std::hex << std::setw(16) << std::setfill('0') << lo << std::endl;
}
static void printState(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) {
for (int i = 0; i < 8; ++i) {
std::cout << "r" << i << " = "; print(r[i]);
}
for (int i = 0; i < 4; ++i) {
std::cout << "f" << i << " = "; print(f[i]);
}
for (int i = 0; i < 4; ++i) {
std::cout << "e" << i << " = "; print(e[i]);
}
for (int i = 0; i < 4; ++i) {
std::cout << "a" << i << " = "; print(a[i]);
}
}
static bool isDenormal(double x) {
return std::fpclassify(x) == FP_SUBNORMAL;
}
template
FORCE_INLINE void InterpretedVirtualMachine::executeBytecode(int& ic, int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) {
auto& ibc = byteCode[ic];
if (trace) std::cout << std::dec << std::setw(3) << ic << " " << program(ic);
//if(trace) printState(r, f, e, a);
switch (ibc.type)
{
case InstructionType::IADD_RS: {
*ibc.idst += (*ibc.isrc << ibc.shift) + ibc.imm;
} break;
case InstructionType::IADD_M: {
*ibc.idst += load64(scratchpad + (*ibc.isrc & ibc.memMask));
} break;
case InstructionType::IADD_RC: {
*ibc.idst += *ibc.isrc + ibc.imm;
} break;
case InstructionType::ISUB_R: {
*ibc.idst -= *ibc.isrc;
} break;
case InstructionType::ISUB_M: {
*ibc.idst -= load64(scratchpad + (*ibc.isrc & ibc.memMask));
} break;
case InstructionType::IMUL_9C: {
*ibc.idst += 8 * *ibc.idst + ibc.imm;
} break;
case InstructionType::IMUL_R: { //also handles IMUL_RCP
*ibc.idst *= *ibc.isrc;
} break;
case InstructionType::IMUL_M: {
*ibc.idst *= load64(scratchpad + (*ibc.isrc & ibc.memMask));
} break;
case InstructionType::IMULH_R: {
*ibc.idst = mulh(*ibc.idst, *ibc.isrc);
} break;
case InstructionType::IMULH_M: {
*ibc.idst = mulh(*ibc.idst, load64(scratchpad + (*ibc.isrc & ibc.memMask)));
} break;
case InstructionType::ISMULH_R: {
*ibc.idst = smulh(unsigned64ToSigned2sCompl(*ibc.idst), unsigned64ToSigned2sCompl(*ibc.isrc));
} break;
case InstructionType::ISMULH_M: {
*ibc.idst = smulh(unsigned64ToSigned2sCompl(*ibc.idst), unsigned64ToSigned2sCompl(load64(scratchpad + (*ibc.isrc & ibc.memMask))));
} break;
case InstructionType::INEG_R: {
*ibc.idst = ~(*ibc.idst) + 1; //two's complement negative
} break;
case InstructionType::IXOR_R: {
*ibc.idst ^= *ibc.isrc;
} break;
case InstructionType::IXOR_M: {
*ibc.idst ^= load64(scratchpad + (*ibc.isrc & ibc.memMask));
} break;
case InstructionType::IROR_R: {
*ibc.idst = rotr(*ibc.idst, *ibc.isrc & 63);
} break;
case InstructionType::IROL_R: {
*ibc.idst = rotl(*ibc.idst, *ibc.isrc & 63);
} break;
case InstructionType::ISWAP_R: {
int_reg_t temp = *ibc.isrc;
*ibc.isrc = *ibc.idst;
*ibc.idst = temp;
} break;
case InstructionType::FSWAP_R: {
*ibc.fdst = _mm_shuffle_pd(*ibc.fdst, *ibc.fdst, 1);
} break;
case InstructionType::FADD_R: {
*ibc.fdst = _mm_add_pd(*ibc.fdst, *ibc.fsrc);
} break;
case InstructionType::FADD_M: {
__m128d fsrc = load_cvt_i32x2(scratchpad + (*ibc.isrc & ibc.memMask));
*ibc.fdst = _mm_add_pd(*ibc.fdst, fsrc);
} break;
case InstructionType::FSUB_R: {
*ibc.fdst = _mm_sub_pd(*ibc.fdst, *ibc.fsrc);
} break;
case InstructionType::FSUB_M: {
__m128d fsrc = load_cvt_i32x2(scratchpad + (*ibc.isrc & ibc.memMask));
*ibc.fdst = _mm_sub_pd(*ibc.fdst, fsrc);
} break;
case InstructionType::FSCAL_R: {
const __m128d mask = _mm_castsi128_pd(_mm_set1_epi64x(0x81F0000000000000));
*ibc.fdst = _mm_xor_pd(*ibc.fdst, mask);
} break;
case InstructionType::FMUL_R: {
*ibc.fdst = _mm_mul_pd(*ibc.fdst, *ibc.fsrc);
} break;
case InstructionType::FDIV_M: {
__m128d fsrc = ieee_set_exponent<-240>(load_cvt_i32x2(scratchpad + (*ibc.isrc & ibc.memMask)));
*ibc.fdst = _mm_div_pd(*ibc.fdst, fsrc);
} break;
case InstructionType::FSQRT_R: {
*ibc.fdst = _mm_sqrt_pd(*ibc.fdst);
} break;
case InstructionType::COND_R: {
#ifdef RANDOMX_JUMP
*ibc.creg += (1 << ibc.shift);
const uint64_t conditionMask = ((1ULL << RANDOMX_CONDITION_BITS) - 1) << ibc.shift;
if ((*ibc.creg & conditionMask) == 0) {
#ifdef STATS
count_JUMP_taken++;
#endif
ic = ibc.target;
break;
}
#ifdef STATS
count_JUMP_not_taken++;
#endif
#endif
*ibc.idst += condition(ibc.condition, *ibc.isrc, ibc.imm) ? 1 : 0;
} break;
case InstructionType::COND_M: {
#ifdef RANDOMX_JUMP
*ibc.creg += (1uLL << ibc.shift);
const uint64_t conditionMask = ((1ULL << RANDOMX_CONDITION_BITS) - 1) << ibc.shift;
if ((*ibc.creg & conditionMask) == 0) {
#ifdef STATS
count_JUMP_taken++;
#endif
ic = ibc.target;
break;
}
#ifdef STATS
count_JUMP_not_taken++;
#endif
#endif
*ibc.idst += condition(ibc.condition, load64(scratchpad + (*ibc.isrc & ibc.memMask)), ibc.imm) ? 1 : 0;
} break;
case InstructionType::CFROUND: {
setRoundMode(rotr(*ibc.isrc, ibc.imm) % 4);
} break;
case InstructionType::ISTORE: {
store64(scratchpad + (*ibc.idst & ibc.memMask), *ibc.isrc);
} break;
case InstructionType::NOP: {
//nothing
} break;
default:
UNREACHABLE;
}
if (trace) {
if(ibc.type < 20 || ibc.type == 31 || ibc.type == 32)
print(*ibc.idst);
else //if(ibc.type >= 20 && ibc.type <= 30)
print(0);
}
#ifdef FPUCHECK
if (ibc.type >= 26 && ibc.type <= 30) {
double lo = *(((double*)ibc.fdst) + 0);
double hi = *(((double*)ibc.fdst) + 1);
if (lo <= 0 || hi <= 0) {
std::stringstream ss;
ss << "Underflow in operation " << ibc.type;
printState(r, f, e, a);
throw std::runtime_error(ss.str());
}
}
#endif
}
template
void InterpretedVirtualMachine::execute() {
int_reg_t r[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
__m128d f[4];
__m128d e[4];
__m128d a[4];
a[0] = _mm_load_pd(®.a[0].lo);
a[1] = _mm_load_pd(®.a[1].lo);
a[2] = _mm_load_pd(®.a[2].lo);
a[3] = _mm_load_pd(®.a[3].lo);
precompileProgram(r, f, e, a);
uint32_t spAddr0 = mem.mx;
uint32_t spAddr1 = mem.ma;
if (trace) {
std::cout << "execute (reg: r" << readReg0 << ", r" << readReg1 << ", r" << readReg2 << ", r" << readReg3 << ")" << std::endl;
std::cout << "spAddr " << std::hex << std::setw(8) << std::setfill('0') << spAddr1 << " / " << std::setw(8) << std::setfill('0') << spAddr0 << std::endl;
std::cout << "ma/mx " << std::hex << std::setw(8) << std::setfill('0') << mem.ma << std::setw(8) << std::setfill('0') << mem.mx << std::endl;
printState(r, f, e, a);
}
for(unsigned ic = 0; ic < RANDOMX_PROGRAM_ITERATIONS; ++ic) {
//std::cout << "Iteration " << iter << std::endl;
uint64_t spMix = r[readReg0] ^ r[readReg1];
spAddr0 ^= spMix;
spAddr0 &= ScratchpadL3Mask64;
spAddr1 ^= spMix >> 32;
spAddr1 &= ScratchpadL3Mask64;
r[0] ^= load64(scratchpad + spAddr0 + 0);
r[1] ^= load64(scratchpad + spAddr0 + 8);
r[2] ^= load64(scratchpad + spAddr0 + 16);
r[3] ^= load64(scratchpad + spAddr0 + 24);
r[4] ^= load64(scratchpad + spAddr0 + 32);
r[5] ^= load64(scratchpad + spAddr0 + 40);
r[6] ^= load64(scratchpad + spAddr0 + 48);
r[7] ^= load64(scratchpad + spAddr0 + 56);
f[0] = load_cvt_i32x2(scratchpad + spAddr1 + 0);
f[1] = load_cvt_i32x2(scratchpad + spAddr1 + 8);
f[2] = load_cvt_i32x2(scratchpad + spAddr1 + 16);
f[3] = load_cvt_i32x2(scratchpad + spAddr1 + 24);
e[0] = ieee_set_exponent<-240>(load_cvt_i32x2(scratchpad + spAddr1 + 32));
e[1] = ieee_set_exponent<-240>(load_cvt_i32x2(scratchpad + spAddr1 + 40));
e[2] = ieee_set_exponent<-240>(load_cvt_i32x2(scratchpad + spAddr1 + 48));
e[3] = ieee_set_exponent<-240>(load_cvt_i32x2(scratchpad + spAddr1 + 56));
if (trace) {
std::cout << "iteration " << std::dec << ic << std::endl;
std::cout << "spAddr " << std::hex << std::setw(8) << std::setfill('0') << spAddr1 << " / " << std::setw(8) << std::setfill('0') << spAddr0 << std::endl;
std::cout << "ma/mx " << std::hex << std::setw(8) << std::setfill('0') << mem.ma << std::setw(8) << std::setfill('0') << mem.mx << std::endl;
printState(r, f, e, a);
std::cout << "-----------------------------------" << std::endl;
}
executeBytecode(r, f, e, a);
mem.mx ^= r[readReg2] ^ r[readReg3];
mem.mx &= CacheLineAlignMask;
if (superscalar) {
executeSuperscalar(datasetBase + mem.ma / CacheLineSize, r);
}
else {
Cache& cache = mem.ds.cache;
uint64_t datasetLine[CacheLineSize / sizeof(uint64_t)];
initBlock(cache, (uint8_t*)datasetLine, datasetBase + mem.ma / CacheLineSize, RANDOMX_CACHE_ACCESSES / 8);
for (int i = 0; i < RegistersCount; ++i)
r[i] ^= datasetLine[i];
}
std::swap(mem.mx, mem.ma);
if (trace) {
std::cout << "iteration " << std::dec << ic << std::endl;
std::cout << "spAddr " << std::hex << std::setw(8) << std::setfill('0') << spAddr1 << " / " << std::setw(8) << std::setfill('0') << spAddr0 << std::endl;
std::cout << "ma/mx " << std::hex << std::setw(8) << std::setfill('0') << mem.ma << std::setw(8) << std::setfill('0') << mem.mx << std::endl;
printState(r, f, e, a);
std::cout << "===================================" << std::endl;
}
store64(scratchpad + spAddr1 + 0, r[0]);
store64(scratchpad + spAddr1 + 8, r[1]);
store64(scratchpad + spAddr1 + 16, r[2]);
store64(scratchpad + spAddr1 + 24, r[3]);
store64(scratchpad + spAddr1 + 32, r[4]);
store64(scratchpad + spAddr1 + 40, r[5]);
store64(scratchpad + spAddr1 + 48, r[6]);
store64(scratchpad + spAddr1 + 56, r[7]);
f[0] = _mm_xor_pd(f[0], e[0]);
f[1] = _mm_xor_pd(f[1], e[1]);
f[2] = _mm_xor_pd(f[2], e[2]);
f[3] = _mm_xor_pd(f[3], e[3]);
#ifdef FPUCHECK
for(int i = 0; i < 4; ++i) {
double lo = *(((double*)&f[i]) + 0);
double hi = *(((double*)&f[i]) + 1);
if (isDenormal(lo) || isDenormal(hi)) {
std::stringstream ss;
ss << "Denormal f" << i;
throw std::runtime_error(ss.str());
}
}
#endif
_mm_store_pd((double*)(scratchpad + spAddr0 + 0), f[0]);
_mm_store_pd((double*)(scratchpad + spAddr0 + 16), f[1]);
_mm_store_pd((double*)(scratchpad + spAddr0 + 32), f[2]);
_mm_store_pd((double*)(scratchpad + spAddr0 + 48), f[3]);
spAddr0 = 0;
spAddr1 = 0;
}
store64(®.r[0], r[0]);
store64(®.r[1], r[1]);
store64(®.r[2], r[2]);
store64(®.r[3], r[3]);
store64(®.r[4], r[4]);
store64(®.r[5], r[5]);
store64(®.r[6], r[6]);
store64(®.r[7], r[7]);
_mm_store_pd(®.f[0].lo, f[0]);
_mm_store_pd(®.f[1].lo, f[1]);
_mm_store_pd(®.f[2].lo, f[2]);
_mm_store_pd(®.f[3].lo, f[3]);
_mm_store_pd(®.e[0].lo, e[0]);
_mm_store_pd(®.e[1].lo, e[1]);
_mm_store_pd(®.e[2].lo, e[2]);
_mm_store_pd(®.e[3].lo, e[3]);
}
template void InterpretedVirtualMachine::execute();
template void InterpretedVirtualMachine::execute();
static int getConditionRegister(int(®isterUsage)[8]) {
int min = INT_MAX;
int minIndex;
for (unsigned i = 0; i < 8; ++i) {
if (registerUsage[i] < min) {
min = registerUsage[i];
minIndex = i;
}
}
return minIndex;
}
constexpr uint64_t superscalarMul0 = 6364136223846793005ULL;
constexpr uint64_t superscalarAdd1 = 9298410992540426748ULL;
constexpr uint64_t superscalarAdd2 = 12065312585734608966ULL;
constexpr uint64_t superscalarAdd3 = 9306329213124610396ULL;
constexpr uint64_t superscalarAdd4 = 5281919268842080866ULL;
constexpr uint64_t superscalarAdd5 = 10536153434571861004ULL;
constexpr uint64_t superscalarAdd6 = 3398623926847679864ULL;
constexpr uint64_t superscalarAdd7 = 9549104520008361294ULL;
static uint8_t* getMixBlock(uint64_t registerValue, Cache& cache) {
uint8_t* mixBlock;
if (RANDOMX_ARGON_GROWTH == 0) {
constexpr uint32_t mask = (RANDOMX_ARGON_MEMORY * ArgonBlockSize / CacheLineSize - 1);
mixBlock = cache.memory + (registerValue & mask) * CacheLineSize;
}
else {
const uint32_t modulus = cache.size / CacheLineSize;
mixBlock = cache.memory + (registerValue % modulus) * CacheLineSize;
}
return mixBlock;
}
template
void InterpretedVirtualMachine::executeSuperscalar(int_reg_t(&r)[8], SuperscalarProgram& prog, std::vector& reciprocals) {
for (unsigned j = 0; j < prog.getSize(); ++j) {
Instruction& instr = prog(j);
switch (instr.opcode)
{
case RandomX::SuperscalarInstructionType::ISUB_R:
r[instr.dst] -= r[instr.src];
break;
case RandomX::SuperscalarInstructionType::IXOR_R:
r[instr.dst] ^= r[instr.src];
break;
case RandomX::SuperscalarInstructionType::IADD_RS:
r[instr.dst] += r[instr.src] << (instr.mod % 4);
break;
case RandomX::SuperscalarInstructionType::IMUL_R:
r[instr.dst] *= r[instr.src];
break;
case RandomX::SuperscalarInstructionType::IROR_C:
r[instr.dst] = rotr(r[instr.dst], instr.getImm32());
break;
case RandomX::SuperscalarInstructionType::IADD_C7:
case RandomX::SuperscalarInstructionType::IADD_C8:
case RandomX::SuperscalarInstructionType::IADD_C9:
r[instr.dst] += signExtend2sCompl(instr.getImm32());
break;
case RandomX::SuperscalarInstructionType::IXOR_C7:
case RandomX::SuperscalarInstructionType::IXOR_C8:
case RandomX::SuperscalarInstructionType::IXOR_C9:
r[instr.dst] ^= signExtend2sCompl(instr.getImm32());
break;
case RandomX::SuperscalarInstructionType::IMULH_R:
r[instr.dst] = mulh(r[instr.dst], r[instr.src]);
break;
case RandomX::SuperscalarInstructionType::ISMULH_R:
r[instr.dst] = smulh(r[instr.dst], r[instr.src]);
break;
case RandomX::SuperscalarInstructionType::IMUL_RCP:
if(superscalar)
r[instr.dst] *= reciprocals[instr.getImm32()];
else
r[instr.dst] *= reciprocal(instr.getImm32());
break;
default:
UNREACHABLE;
}
}
}
template
void InterpretedVirtualMachine::executeSuperscalar(uint32_t blockNumber, int_reg_t(&r)[8]) {
int_reg_t rl[8];
uint8_t* mixBlock;
uint64_t registerValue = blockNumber;
rl[0] = (blockNumber + 1) * superscalarMul0;
rl[1] = rl[0] ^ superscalarAdd1;
rl[2] = rl[0] ^ superscalarAdd2;
rl[3] = rl[0] ^ superscalarAdd3;
rl[4] = rl[0] ^ superscalarAdd4;
rl[5] = rl[0] ^ superscalarAdd5;
rl[6] = rl[0] ^ superscalarAdd6;
rl[7] = rl[0] ^ superscalarAdd7;
Cache& cache = mem.ds.cache;
for (unsigned i = 0; i < RANDOMX_CACHE_ACCESSES; ++i) {
mixBlock = getMixBlock(registerValue, cache);
SuperscalarProgram& prog = superScalarPrograms[i];
executeSuperscalar(rl, prog, reciprocals);
for(unsigned q = 0; q < 8; ++q)
rl[q] ^= load64(mixBlock + 8 * q);
registerValue = rl[prog.getAddressRegister()];
}
for (unsigned q = 0; q < 8; ++q)
r[q] ^= rl[q];
}
template
void InterpretedVirtualMachine::precompileSuperscalar(SuperscalarProgram* programs) {
memcpy(superScalarPrograms, programs, sizeof(superScalarPrograms));
reciprocals.clear();
for (unsigned i = 0; i < RANDOMX_CACHE_ACCESSES; ++i) {
for (unsigned j = 0; j < superScalarPrograms[i].getSize(); ++j) {
Instruction& instr = superScalarPrograms[i](j);
if (instr.opcode == SuperscalarInstructionType::IMUL_RCP) {
auto rcp = reciprocal(instr.getImm32());
instr.setImm32(reciprocals.size());
reciprocals.push_back(rcp);
}
}
}
}
#include "instructionWeights.hpp"
template
void InterpretedVirtualMachine::precompileProgram(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) {
int registerUsage[8];
for (unsigned i = 0; i < 8; ++i) {
registerUsage[i] = -1;
}
for (unsigned i = 0; i < RANDOMX_PROGRAM_SIZE; ++i) {
auto& instr = program(i);
auto& ibc = byteCode[i];
switch (instr.opcode) {
CASE_REP(IADD_RS) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IADD_RS;
ibc.idst = &r[dst];
if (dst != 5) {
ibc.isrc = &r[src];
ibc.shift = instr.mod % 4;
ibc.imm = 0;
}
else {
ibc.isrc = &r[src];
ibc.shift = instr.mod % 4;
ibc.imm = signExtend2sCompl(instr.getImm32());
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(IADD_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IADD_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.getImm32();
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(IADD_RC) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IADD_RC;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
ibc.imm = signExtend2sCompl(instr.getImm32());
registerUsage[instr.dst] = i;
} break;
CASE_REP(ISUB_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::ISUB_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = signExtend2sCompl(instr.getImm32());
ibc.isrc = &ibc.imm;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(ISUB_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::ISUB_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.getImm32();
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(IMUL_9C) {
auto dst = instr.dst % RegistersCount;
ibc.type = InstructionType::IMUL_9C;
ibc.idst = &r[dst];
ibc.imm = signExtend2sCompl(instr.getImm32());
registerUsage[instr.dst] = i;
} break;
CASE_REP(IMUL_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IMUL_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = signExtend2sCompl(instr.getImm32());
ibc.isrc = &ibc.imm;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(IMUL_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IMUL_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.getImm32();
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(IMULH_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IMULH_R;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
registerUsage[instr.dst] = i;
} break;
CASE_REP(IMULH_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IMULH_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.getImm32();
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(ISMULH_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::ISMULH_R;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
registerUsage[instr.dst] = i;
} break;
CASE_REP(ISMULH_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::ISMULH_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.getImm32();
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(IMUL_RCP) {
uint32_t divisor = instr.getImm32();
if (divisor != 0) {
auto dst = instr.dst % RegistersCount;
ibc.type = InstructionType::IMUL_R;
ibc.idst = &r[dst];
ibc.imm = reciprocal(divisor);
ibc.isrc = &ibc.imm;
registerUsage[instr.dst] = i;
}
else {
ibc.type = InstructionType::NOP;
}
} break;
CASE_REP(INEG_R) {
auto dst = instr.dst % RegistersCount;
ibc.type = InstructionType::INEG_R;
ibc.idst = &r[dst];
registerUsage[instr.dst] = i;
} break;
CASE_REP(IXOR_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IXOR_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = signExtend2sCompl(instr.getImm32());
ibc.isrc = &ibc.imm;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(IXOR_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IXOR_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.getImm32();
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(IROR_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IROR_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = instr.getImm32();
ibc.isrc = &ibc.imm;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(IROL_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IROL_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = instr.getImm32();
ibc.isrc = &ibc.imm;
}
registerUsage[instr.dst] = i;
} break;
CASE_REP(ISWAP_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
if (src != dst) {
ibc.idst = &r[dst];
ibc.isrc = &r[src];
ibc.type = InstructionType::ISWAP_R;
registerUsage[instr.dst] = i;
registerUsage[instr.src] = i;
}
else {
ibc.type = InstructionType::NOP;
}
} break;
CASE_REP(FSWAP_R) {
auto dst = instr.dst % RegistersCount;
ibc.type = InstructionType::FSWAP_R;
if (dst < 4)
ibc.fdst = &f[dst];
else
ibc.fdst = &e[dst - 4];
} break;
CASE_REP(FADD_R) {
auto dst = instr.dst % 4;
auto src = instr.src % 4;
ibc.type = InstructionType::FADD_R;
ibc.fdst = &f[dst];
ibc.fsrc = &a[src];
} break;
CASE_REP(FADD_M) {
auto dst = instr.dst % 4;
auto src = instr.src % 8;
ibc.type = InstructionType::FADD_M;
ibc.fdst = &f[dst];
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
} break;
CASE_REP(FSUB_R) {
auto dst = instr.dst % 4;
auto src = instr.src % 4;
ibc.type = InstructionType::FSUB_R;
ibc.fdst = &f[dst];
ibc.fsrc = &a[src];
} break;
CASE_REP(FSUB_M) {
auto dst = instr.dst % 4;
auto src = instr.src % 8;
ibc.type = InstructionType::FSUB_M;
ibc.fdst = &f[dst];
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
} break;
CASE_REP(FSCAL_R) {
auto dst = instr.dst % 4;
ibc.fdst = &f[dst];
ibc.type = InstructionType::FSCAL_R;
} break;
CASE_REP(FMUL_R) {
auto dst = instr.dst % 4;
auto src = instr.src % 4;
ibc.type = InstructionType::FMUL_R;
ibc.fdst = &e[dst];
ibc.fsrc = &a[src];
} break;
CASE_REP(FDIV_M) {
auto dst = instr.dst % 4;
auto src = instr.src % 8;
ibc.type = InstructionType::FDIV_M;
ibc.fdst = &e[dst];
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
} break;
CASE_REP(FSQRT_R) {
auto dst = instr.dst % 4;
ibc.type = InstructionType::FSQRT_R;
ibc.fdst = &e[dst];
} break;
CASE_REP(COND_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::COND_R;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
ibc.condition = (instr.mod >> 2) & 7;
ibc.imm = instr.getImm32();
//jump condition
int reg = getConditionRegister(registerUsage);
ibc.target = registerUsage[reg];
ibc.shift = (instr.mod >> 5);
ibc.creg = &r[reg];
for (unsigned j = 0; j < 8; ++j) { //mark all registers as used
registerUsage[j] = i;
}
} break;
CASE_REP(COND_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::COND_M;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
ibc.condition = (instr.mod >> 2) & 7;
ibc.imm = instr.getImm32();
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
//jump condition
int reg = getConditionRegister(registerUsage);
ibc.target = registerUsage[reg];
ibc.shift = (instr.mod >> 5);
ibc.creg = &r[reg];
for (unsigned j = 0; j < 8; ++j) { //mark all registers as used
registerUsage[j] = i;
}
} break;
CASE_REP(CFROUND) {
auto src = instr.src % 8;
ibc.isrc = &r[src];
ibc.type = InstructionType::CFROUND;
ibc.imm = instr.getImm32() & 63;
} break;
CASE_REP(ISTORE) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::ISTORE;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
} break;
CASE_REP(NOP) {
ibc.type = InstructionType::NOP;
} break;
default:
UNREACHABLE;
}
}
}
}