/* Copyright (c) 2019 tevador This file is part of RandomX. RandomX is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. RandomX is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with RandomX. If not, see. */ #include "blake2/blake2.h" #include "configuration.h" #include "Program.hpp" #include "blake2/endian.h"; #include #include namespace RandomX { // Intel Ivy Bridge reference namespace LightInstructionType { //uOPs (decode) execution ports latency code size constexpr int IADD_R = 0; //1 p015 1 3 constexpr int IADD_C = 1; //1 p015 1 7 constexpr int IADD_RC = 2; //1 p1 3 8 constexpr int ISUB_R = 3; //1 p015 1 3 constexpr int IMUL_9C = 4; //1 p1 3 8 constexpr int IMUL_R = 5; //1 p1 3 4 constexpr int IMUL_C = 6; //1 p1 3 7 constexpr int IMULH_R = 7; //1+2+1 0+(p1,p5)+0 3 3+3+3 constexpr int ISMULH_R = 8; //1+2+1 0+(p1,p5)+0 3 3+3+3 constexpr int IMUL_RCP = 9; //1+1 p015+p1 4 10+4 constexpr int IXOR_R = 10; //1 p015 1 3 constexpr int IXOR_C = 11; //1 p015 1 7 constexpr int IROR_R = 12; //1+2 0+(p0,p5) 1 3+3 constexpr int IROR_C = 13; //1 p05 1 4 constexpr int COND_R = 14; //1+1+1+1+1+1 p015+p5+0+p015+p05+p015 3 7+13+3+7+3+3 constexpr int COUNT = 15; } namespace LightInstructionOpcode { constexpr int IADD_R = 0; constexpr int IADD_RC = RANDOMX_FREQ_IADD_R + RANDOMX_FREQ_IADD_M; constexpr int ISUB_R = IADD_RC + RANDOMX_FREQ_IADD_RC; constexpr int IMUL_9C = ISUB_R + RANDOMX_FREQ_ISUB_R + RANDOMX_FREQ_ISUB_M; constexpr int IMUL_R = IMUL_9C + RANDOMX_FREQ_IMUL_9C; constexpr int IMULH_R = IMUL_R + RANDOMX_FREQ_IMUL_R + RANDOMX_FREQ_IMUL_M; constexpr int ISMULH_R = IMULH_R + RANDOMX_FREQ_IMULH_R + RANDOMX_FREQ_IMULH_M; constexpr int IMUL_RCP = ISMULH_R + RANDOMX_FREQ_ISMULH_R + RANDOMX_FREQ_ISMULH_M; constexpr int IXOR_R = IMUL_RCP + RANDOMX_FREQ_IMUL_RCP + RANDOMX_FREQ_INEG_R; constexpr int IROR_R = IXOR_R + RANDOMX_FREQ_IXOR_R + RANDOMX_FREQ_IXOR_M; constexpr int COND_R = IROR_R + RANDOMX_FREQ_IROR_R + RANDOMX_FREQ_IROL_R + RANDOMX_FREQ_ISWAP_R + RANDOMX_FREQ_FSWAP_R + RANDOMX_FREQ_FADD_R + RANDOMX_FREQ_FADD_M + RANDOMX_FREQ_FSUB_R + RANDOMX_FREQ_FSUB_M + RANDOMX_FREQ_FSCAL_R + RANDOMX_FREQ_FMUL_R + RANDOMX_FREQ_FDIV_M + RANDOMX_FREQ_FSQRT_R; } const int lightInstructionOpcode[] = { LightInstructionOpcode::IADD_R, LightInstructionOpcode::IADD_R, LightInstructionOpcode::IADD_RC, LightInstructionOpcode::ISUB_R, LightInstructionOpcode::IMUL_9C, LightInstructionOpcode::IMUL_R, LightInstructionOpcode::IMUL_R, LightInstructionOpcode::IMULH_R, LightInstructionOpcode::ISMULH_R, LightInstructionOpcode::IMUL_RCP, LightInstructionOpcode::IXOR_R, LightInstructionOpcode::IXOR_R, LightInstructionOpcode::IROR_R, LightInstructionOpcode::IROR_R, LightInstructionOpcode::COND_R }; const int lightInstruction[] = { LightInstructionType::IADD_R, LightInstructionType::IADD_C, LightInstructionType::IADD_RC, LightInstructionType::ISUB_R, LightInstructionType::IMUL_9C, LightInstructionType::IMUL_R, LightInstructionType::IMUL_R, LightInstructionType::IMUL_C, LightInstructionType::IMULH_R, LightInstructionType::ISMULH_R, LightInstructionType::IMUL_RCP, LightInstructionType::IXOR_R, LightInstructionType::IXOR_C, LightInstructionType::IROR_R, LightInstructionType::IROR_C, LightInstructionType::COND_R }; namespace ExecutionPort { using type = int; constexpr type Null = 0; constexpr type P0 = 1; constexpr type P1 = 2; constexpr type P5 = 4; constexpr type P05 = 6; constexpr type P015 = 7; } class Blake2Generator { public: Blake2Generator(const void* seed) : dataIndex(sizeof(data)) { memset(data, 0, sizeof(data)); memcpy(data, seed, SeedSize); data[60] = 39; } uint8_t getByte() { checkData(1); return data[dataIndex++]; } uint32_t getInt32() { checkData(4); auto ret = load32(&data[dataIndex]); dataIndex += 4; return ret; } private: uint8_t data[64]; size_t dataIndex; void checkData(const size_t bytesNeeded) { if (dataIndex + bytesNeeded > sizeof(data)) { blake2b(data, sizeof(data), data, sizeof(data), nullptr, 0); dataIndex = 0; } } }; class MacroOp { public: MacroOp(const char* name, int size) : name_(name), size_(size), latency_(0), uop1_(ExecutionPort::Null), uop2_(ExecutionPort::Null) {} MacroOp(const char* name, int size, int latency, ExecutionPort::type uop) : name_(name), size_(size), latency_(latency), uop1_(uop), uop2_(ExecutionPort::Null) {} MacroOp(const char* name, int size, int latency, ExecutionPort::type uop1, ExecutionPort::type uop2) : name_(name), size_(size), latency_(latency), uop1_(uop1), uop2_(uop2) {} const char* getName() const { return name_; } int getSize() const { return size_; } int getLatency() const { return latency_; } ExecutionPort::type getUop1() const { return uop1_; } ExecutionPort::type getUop2() const { return uop2_; } bool isSimple() const { return uop2_ == ExecutionPort::Null; } bool isEliminated() const { return uop1_ == ExecutionPort::Null; } static const MacroOp Add_rr; static const MacroOp Add_ri; static const MacroOp Lea_sib; static const MacroOp Sub_rr; static const MacroOp Imul_rr; static const MacroOp Imul_rri; static const MacroOp Imul_r; static const MacroOp Mul_r; static const MacroOp Mov_rr; static const MacroOp Mov_ri64; static const MacroOp Xor_rr; static const MacroOp Xor_ri; static const MacroOp Ror_rcl; static const MacroOp Ror_ri; static const MacroOp TestJmp_fused; static const MacroOp Xor_self; static const MacroOp Cmp_ri; static const MacroOp Setcc_r; private: const char* name_; int size_; int latency_; ExecutionPort::type uop1_; ExecutionPort::type uop2_; }; const MacroOp MacroOp::Add_rr = MacroOp("add r,r", 3, 1, ExecutionPort::P015); const MacroOp MacroOp::Add_ri = MacroOp("add r,i", 7, 1, ExecutionPort::P015); const MacroOp MacroOp::Lea_sib = MacroOp("lea r,m", 8, 3, ExecutionPort::P1); const MacroOp MacroOp::Sub_rr = MacroOp("sub r,r", 3, 1, ExecutionPort::P015); const MacroOp MacroOp::Imul_rr = MacroOp("imul r,r", 4, 3, ExecutionPort::P1); const MacroOp MacroOp::Imul_rri = MacroOp("imul r,r,i", 7, 3, ExecutionPort::P1); const MacroOp MacroOp::Imul_r = MacroOp("imul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5); const MacroOp MacroOp::Mul_r = MacroOp("mul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5); const MacroOp MacroOp::Mov_rr = MacroOp("mov r,r", 3); const MacroOp MacroOp::Mov_ri64 = MacroOp("mov rax,i64", 10, 1, ExecutionPort::P015); const MacroOp MacroOp::Xor_rr = MacroOp("xor r,r", 3, 1, ExecutionPort::P015); const MacroOp MacroOp::Xor_ri = MacroOp("xor r,i", 7, 1, ExecutionPort::P015); const MacroOp MacroOp::Ror_rcl = MacroOp("ror r,cl", 3, 1, ExecutionPort::P0, ExecutionPort::P5); const MacroOp MacroOp::Ror_ri = MacroOp("ror r,i", 4, 1, ExecutionPort::P05); const MacroOp MacroOp::Xor_self = MacroOp("xor rcx,rcx", 3); const MacroOp MacroOp::Cmp_ri = MacroOp("cmp r,i", 7, 1, ExecutionPort::P015); const MacroOp MacroOp::Setcc_r = MacroOp("setcc cl", 3, 1, ExecutionPort::P05); const MacroOp MacroOp::TestJmp_fused = MacroOp("testjmp r,i", 13, 0, ExecutionPort::P5); template T* begin(T(&arr)[N]) { return &arr[0]; } template T* end(T(&arr)[N]) { return &arr[0] + N; } const MacroOp* IMULH_R_ops_array[] = { &MacroOp::Mov_rr, &MacroOp::Mul_r, &MacroOp::Mov_rr }; const MacroOp* ISMULH_R_ops_array[] = { &MacroOp::Mov_rr, &MacroOp::Imul_r, &MacroOp::Mov_rr }; const MacroOp* IMUL_RCP_ops_array[] = { &MacroOp::Mov_ri64, &MacroOp::Imul_rr }; const MacroOp* IROR_R_ops_array[] = { &MacroOp::Mov_rr, &MacroOp::Ror_rcl }; const MacroOp* COND_R_ops_array[] = { &MacroOp::Add_ri, &MacroOp::TestJmp_fused, &MacroOp::Xor_self, &MacroOp::Cmp_ri, &MacroOp::Setcc_r, &MacroOp::Add_rr }; class LightInstructionInfo { public: LightInstructionInfo(const char* name, const MacroOp* op) : name_(name), op_(op), opsCount_(1), latency_(op->getLatency()) {} template LightInstructionInfo(const char* name, const MacroOp*(&arr)[N]) : name_(name), ops_(arr), opsCount_(N), latency_(0) { for (unsigned i = 0; i < N; ++i) { latency_ += arr[i]->getLatency(); } static_assert(N > 1, "Invalid array size"); } template LightInstructionInfo(const char* name, const MacroOp*(&arr)[N], int latency) : name_(name), ops_(arr), opsCount_(N), latency_(latency) { static_assert(N > 1, "Invalid array size"); } const char* getName() const { return name_; } int getSize() const { return opsCount_; } bool isSimple() const { return opsCount_ == 1; } int getLatency() const { return latency_; } const MacroOp* getOp(int index) const { return opsCount_ > 1 ? ops_[index] : op_; } static const LightInstructionInfo IADD_R; static const LightInstructionInfo IADD_C; static const LightInstructionInfo IADD_RC; static const LightInstructionInfo ISUB_R; static const LightInstructionInfo IMUL_9C; static const LightInstructionInfo IMUL_R; static const LightInstructionInfo IMUL_C; static const LightInstructionInfo IMULH_R; static const LightInstructionInfo ISMULH_R; static const LightInstructionInfo IMUL_RCP; static const LightInstructionInfo IXOR_R; static const LightInstructionInfo IXOR_C; static const LightInstructionInfo IROR_R; static const LightInstructionInfo IROR_C; static const LightInstructionInfo COND_R; static const LightInstructionInfo NOP; private: const char* name_; union { const MacroOp** ops_; const MacroOp* op_; }; int opsCount_; int latency_; LightInstructionInfo(const char* name) : name_(name), opsCount_(0), latency_(0) {} }; const LightInstructionInfo LightInstructionInfo::IADD_R = LightInstructionInfo("IADD_R", &MacroOp::Add_rr); const LightInstructionInfo LightInstructionInfo::IADD_C = LightInstructionInfo("IADD_C", &MacroOp::Add_ri); const LightInstructionInfo LightInstructionInfo::IADD_RC = LightInstructionInfo("IADD_RC", &MacroOp::Lea_sib); const LightInstructionInfo LightInstructionInfo::ISUB_R = LightInstructionInfo("ISUB_R", &MacroOp::Sub_rr); const LightInstructionInfo LightInstructionInfo::IMUL_9C = LightInstructionInfo("IMUL_9C", &MacroOp::Lea_sib); const LightInstructionInfo LightInstructionInfo::IMUL_R = LightInstructionInfo("IMUL_R", &MacroOp::Imul_rr); const LightInstructionInfo LightInstructionInfo::IMUL_C = LightInstructionInfo("IMUL_C", &MacroOp::Imul_rri); const LightInstructionInfo LightInstructionInfo::IMULH_R = LightInstructionInfo("IMULH_R", IMULH_R_ops_array); const LightInstructionInfo LightInstructionInfo::ISMULH_R = LightInstructionInfo("ISMULH_R", ISMULH_R_ops_array); const LightInstructionInfo LightInstructionInfo::IMUL_RCP = LightInstructionInfo("IMUL_RCP", IMUL_RCP_ops_array); const LightInstructionInfo LightInstructionInfo::IXOR_R = LightInstructionInfo("IXOR_R", &MacroOp::Xor_rr); const LightInstructionInfo LightInstructionInfo::IXOR_C = LightInstructionInfo("IXOR_C", &MacroOp::Xor_ri); const LightInstructionInfo LightInstructionInfo::IROR_R = LightInstructionInfo("IROR_R", IROR_R_ops_array); const LightInstructionInfo LightInstructionInfo::IROR_C = LightInstructionInfo("IROR_C", &MacroOp::Ror_ri); const LightInstructionInfo LightInstructionInfo::COND_R = LightInstructionInfo("COND_R", COND_R_ops_array); const LightInstructionInfo LightInstructionInfo::NOP = LightInstructionInfo("NOP"); const int buffer0[] = { 3, 3, 10 }; const int buffer1[] = { 7, 3, 3, 3 }; const int buffer2[] = { 3, 3, 3, 7 }; const int buffer3[] = { 4, 8, 4 }; const int buffer4[] = { 4, 4, 4, 4 }; const int buffer5[] = { 3, 7, 3, 3 }; const int buffer6[] = { 3, 3, 7, 3 }; const int buffer7[] = { 13, 3 }; class DecoderBuffer { public: static DecoderBuffer Default; template DecoderBuffer(const char* name, int index, const int(&arr)[N]) : name_(name), index_(index), counts_(arr), opsCount_(N) {} const int* getCounts() const { return counts_; } int getSize() const { return opsCount_; } int getIndex() const { return index_; } const char* getName() const { return name_; } const DecoderBuffer& fetchNext(int prevType, Blake2Generator& gen) { if (prevType == LightInstructionType::IMULH_R || prevType == LightInstructionType::ISMULH_R) return decodeBuffers[0]; if (index_ == 0) { if ((gen.getByte() % 2) == 0) return decodeBuffers[3]; else return decodeBuffers[4]; } if (index_ == 2) { return decodeBuffers[7]; } if (index_ == 7) { return decodeBuffers[1]; } return fetchNextDefault(gen); } private: const char* name_; int index_; const int* counts_; int opsCount_; DecoderBuffer() : index_(-1) {} static const DecoderBuffer decodeBuffers[8]; const DecoderBuffer& fetchNextDefault(Blake2Generator& gen) { int select; do { select = gen.getByte() & 7; } while (select == 7); return decodeBuffers[select]; } }; const DecoderBuffer DecoderBuffer::decodeBuffers[8] = { DecoderBuffer("3,3,10", 0, buffer0), DecoderBuffer("7,3,3,3", 1, buffer1), DecoderBuffer("3,3,3,7", 2, buffer2), DecoderBuffer("4,8,4", 3, buffer3), DecoderBuffer("4,4,4,4", 4, buffer4), DecoderBuffer("3,7,3,3", 5, buffer5), DecoderBuffer("3,3,7,3", 6, buffer6), DecoderBuffer("13,3", 7, buffer7), }; DecoderBuffer DecoderBuffer::Default = DecoderBuffer(); const int slot_3[] = { LightInstructionType::IADD_R, LightInstructionType::ISUB_R, LightInstructionType::IXOR_R, LightInstructionType::IADD_R }; const int slot_3L[] = { LightInstructionType::IADD_R, LightInstructionType::ISUB_R, LightInstructionType::IXOR_R, LightInstructionType::IMULH_R, LightInstructionType::ISMULH_R, LightInstructionType::IXOR_R, LightInstructionType::IMULH_R, LightInstructionType::ISMULH_R }; const int slot_3F[] = { LightInstructionType::IADD_R, LightInstructionType::ISUB_R, LightInstructionType::IXOR_R, LightInstructionType::IROR_R }; const int slot_4[] = { LightInstructionType::IMUL_R, LightInstructionType::IROR_C }; const int slot_7[] = { LightInstructionType::IADD_C, LightInstructionType::IMUL_C, LightInstructionType::IXOR_C, LightInstructionType::IXOR_C }; const int slot_7L = LightInstructionType::COND_R; const int slot_8[] = { LightInstructionType::IADD_RC, LightInstructionType::IMUL_9C }; const int slot_10 = LightInstructionType::IMUL_RCP; class LightInstruction { public: Instruction toInstr() { Instruction instr; instr.opcode = lightInstructionOpcode[type_]; instr.dst = dst_; instr.src = src_ >= 0 ? src_ : dst_; instr.mod = mod_; instr.setImm32(imm32_); return instr; } static LightInstruction createForSlot(Blake2Generator& gen, int slotSize, bool isLast = false, bool isFirst = false) { switch (slotSize) { case 3: if (isLast) { return create(slot_3L[gen.getByte() & 7], gen); } else if (isFirst) { return create(slot_3F[gen.getByte() & 3], gen); } else { return create(slot_3[gen.getByte() & 3], gen); } case 4: return create(slot_4[gen.getByte() & 1], gen); case 7: if (isLast) { return create(slot_7L, gen); } else { return create(slot_7[gen.getByte() & 3], gen); } case 8: return create(slot_8[gen.getByte() & 1], gen); case 10: return create(slot_10, gen); default: break; } } static LightInstruction create(int type, Blake2Generator& gen) { LightInstruction li; li.type_ = type; li.opGroup_ = type; switch (type) { case LightInstructionType::IADD_R: { li.dst_ = gen.getByte() & 7; do { li.src_ = gen.getByte() & 7; } while (li.dst_ == li.src_); li.mod_ = 0; li.imm32_ = 0; li.info_ = &LightInstructionInfo::IADD_R; li.opGroup_ = LightInstructionType::IADD_R; li.opGroupPar_ = li.src_; } break; case LightInstructionType::IADD_C: { li.dst_ = gen.getByte() & 7; li.src_ = -1; li.mod_ = 0; li.imm32_ = gen.getInt32(); li.info_ = &LightInstructionInfo::IADD_C; li.opGroup_ = LightInstructionType::IADD_R; li.opGroupPar_ = li.src_; } break; case LightInstructionType::IADD_RC: { li.dst_ = gen.getByte() & 7; do { li.src_ = gen.getByte() & 7; } while (li.dst_ == li.src_); li.mod_ = 0; li.imm32_ = gen.getInt32(); li.info_ = &LightInstructionInfo::IADD_RC; li.opGroup_ = LightInstructionType::IADD_R; li.opGroupPar_ = li.src_; } break; case LightInstructionType::ISUB_R: { li.dst_ = gen.getByte() & 7; do { li.src_ = gen.getByte() & 7; } while (li.dst_ == li.src_); li.mod_ = 0; li.imm32_ = 0; li.info_ = &LightInstructionInfo::ISUB_R; li.opGroup_ = LightInstructionType::IADD_R; li.opGroupPar_ = li.src_; } break; case LightInstructionType::IMUL_9C: { li.dst_ = gen.getByte() & 7; do { li.src_ = gen.getByte() & 7; } while (li.dst_ == li.src_); li.mod_ = 0; li.imm32_ = gen.getInt32(); li.info_ = &LightInstructionInfo::IMUL_9C; li.opGroup_ = LightInstructionType::IMUL_C; li.opGroupPar_ = -1; } break; case LightInstructionType::IMUL_R: { li.dst_ = gen.getByte() & 7; do { li.src_ = gen.getByte() & 7; } while (li.dst_ == li.src_); li.mod_ = 0; li.imm32_ = 0; li.info_ = &LightInstructionInfo::IMUL_R; li.opGroup_ = LightInstructionType::IMUL_R; li.opGroupPar_ = gen.getInt32(); } break; case LightInstructionType::IMUL_C: { li.dst_ = gen.getByte() & 7; li.src_ = -1; li.mod_ = 0; li.imm32_ = gen.getInt32(); li.info_ = &LightInstructionInfo::IMUL_C; li.opGroup_ = LightInstructionType::IMUL_C; li.opGroupPar_ = li.src_; } break; case LightInstructionType::IMULH_R: { li.dst_ = gen.getByte() & 7; li.src_ = gen.getByte() & 7; li.mod_ = 0; li.imm32_ = 0; li.info_ = &LightInstructionInfo::IMULH_R; li.opGroup_ = LightInstructionType::IMULH_R; li.opGroupPar_ = gen.getInt32(); } break; case LightInstructionType::ISMULH_R: { li.dst_ = gen.getByte() & 7; li.src_ = gen.getByte() & 7; li.mod_ = 0; li.imm32_ = 0; li.info_ = &LightInstructionInfo::ISMULH_R; li.opGroup_ = LightInstructionType::ISMULH_R; li.opGroupPar_ = gen.getInt32(); } break; case LightInstructionType::IMUL_RCP: { li.dst_ = gen.getByte() & 7; li.src_ = -1; li.mod_ = 0; li.imm32_ = gen.getInt32(); li.info_ = &LightInstructionInfo::IMUL_RCP; li.opGroup_ = LightInstructionType::IMUL_C; li.opGroupPar_ = -1; } break; case LightInstructionType::IXOR_R: { li.dst_ = gen.getByte() & 7; do { li.src_ = gen.getByte() & 7; } while (li.dst_ == li.src_); li.mod_ = 0; li.imm32_ = 0; li.info_ = &LightInstructionInfo::IXOR_R; li.opGroup_ = LightInstructionType::IXOR_R; li.opGroupPar_ = li.src_; } break; case LightInstructionType::IXOR_C: { li.dst_ = gen.getByte() & 7; li.src_ = -1; li.mod_ = 0; li.imm32_ = gen.getInt32(); li.info_ = &LightInstructionInfo::IXOR_C; li.opGroup_ = LightInstructionType::IXOR_R; li.opGroupPar_ = li.src_; } break; case LightInstructionType::IROR_R: { li.dst_ = gen.getByte() & 7; do { li.src_ = gen.getByte() & 7; } while (li.dst_ == li.src_); li.mod_ = 0; li.imm32_ = 0; li.info_ = &LightInstructionInfo::IROR_R; li.opGroup_ = LightInstructionType::IROR_R; li.opGroupPar_ = -1; } break; case LightInstructionType::IROR_C: { li.dst_ = gen.getByte() & 7; li.src_ = -1; li.mod_ = 0; li.imm32_ = gen.getByte(); li.info_ = &LightInstructionInfo::IROR_C; li.opGroup_ = LightInstructionType::IROR_R; li.opGroupPar_ = -1; } break; case LightInstructionType::COND_R: { li.dst_ = gen.getByte() & 7; li.src_ = gen.getByte() & 7; li.mod_ = gen.getByte(); li.imm32_ = gen.getInt32(); li.info_ = &LightInstructionInfo::COND_R; li.opGroup_ = LightInstructionType::COND_R; li.opGroupPar_ = li.imm32_; } break; default: break; } return li; } int getType() { return type_; } int getSource() { return src_; } int getDestination() { return dst_; } int getGroup() { return opGroup_; } int getGroupPar() { return opGroupPar_; } const LightInstructionInfo* getInfo() { return info_; } static const LightInstruction Null; private: int type_; int src_; int dst_; int mod_; uint32_t imm32_; const LightInstructionInfo* info_; int opGroup_; int opGroupPar_; LightInstruction() {} LightInstruction(int type, const LightInstructionInfo* info) : type_(type), info_(info) {} }; class RegisterInfo { public: RegisterInfo() : lastOpGroup(-1), source(-1), value(0), latency(0) {} int lastOpGroup; int source; int value; int latency; }; const LightInstruction LightInstruction::Null = LightInstruction(-1, &LightInstructionInfo::NOP); constexpr int ALU_COUNT_MUL = 1; constexpr int ALU_COUNT = 4; constexpr int LIGHT_OPCODE_BITS = 4; constexpr int V4_SRC_INDEX_BITS = 3; constexpr int V4_DST_INDEX_BITS = 3; static int blakeCounter = 0; // If we don't have enough data available, generate more static FORCE_INLINE void check_data(size_t& data_index, const size_t bytes_needed, uint8_t* data, const size_t data_size) { if (data_index + bytes_needed > data_size) { std::cout << "Calling Blake " << (++blakeCounter) << std::endl; blake2b(data, data_size, data, data_size, nullptr, 0); data_index = 0; } } void generateLightProg2(LightProgram& prog, const void* seed, int indexRegister) { bool portBusy[RANDOMX_LPROG_LATENCY][3]; RegisterInfo registers[8]; bool decoderBusy[RANDOMX_LPROG_LATENCY][4]; Blake2Generator gen(seed); std::vector instructions; DecoderBuffer& fetchLine = DecoderBuffer::Default; LightInstruction currentInstruction = LightInstruction::Null; int instrIndex = 0; int codeSize = 0; int macroOpCount = 0; int rxOpCount = 0; for (int cycle = 0; cycle < 170; ++cycle) { fetchLine = fetchLine.fetchNext(currentInstruction.getType(), gen); std::cout << "; cycle " << cycle << " buffer " << fetchLine.getName() << std::endl; int mopIndex = 0; while (mopIndex < fetchLine.getSize()) { if (instrIndex >= currentInstruction.getInfo()->getSize()) { currentInstruction = LightInstruction::createForSlot(gen, fetchLine.getCounts()[mopIndex], fetchLine.getSize() == mopIndex + 1, fetchLine.getIndex() == 0 && mopIndex == 0); instrIndex = 0; std::cout << "; " << currentInstruction.getInfo()->getName() << std::endl; rxOpCount++; } if (fetchLine.getCounts()[mopIndex] != currentInstruction.getInfo()->getOp(instrIndex)->getSize()) { std::cout << "ERROR instruction " << currentInstruction.getInfo()->getOp(instrIndex)->getName() << " doesn't fit into slot of size " << fetchLine.getCounts()[mopIndex] << std::endl; return; } std::cout << currentInstruction.getInfo()->getOp(instrIndex)->getName() << std::endl; codeSize += currentInstruction.getInfo()->getOp(instrIndex)->getSize(); mopIndex++; instrIndex++; macroOpCount++; } } std::cout << "; code size " << codeSize << std::endl; std::cout << "; x86 macro-ops: " << macroOpCount << std::endl; std::cout << "; RandomX instructions: " << rxOpCount << std::endl; } void generateLightProgram(LightProgram& prog, const void* seed, int indexRegister) { // Source: https://www.agner.org/optimize/instruction_tables.pdf const int op_latency[LightInstructionType::COUNT] = { 1, 2, 1, 2, 3, 5, 5, 4, 1, 2, 5 }; // Instruction latencies for theoretical ASIC implementation const int asic_op_latency[LightInstructionType::COUNT] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; // Available ALUs for each instruction const int op_ALUs[LightInstructionType::COUNT] = { ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT }; uint8_t data[64]; memset(data, 0, sizeof(data)); memcpy(data, seed, SeedSize); // Set data_index past the last byte in data // to trigger full data update with blake hash // before we start using it size_t data_index = sizeof(data); int code_size; do { uint8_t opcode; uint8_t dst_index; uint8_t src_index; uint32_t imm32 = 0; int latency[8]; int asic_latency[9]; // Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution // byte 0: current value of the destination register // byte 1: instruction opcode // byte 2: current value of the source register // // Registers R4-R8 are constant and are treated as having the same value because when we do // the same operation twice with two constant source registers, it can be optimized into a single operation uint64_t inst_data[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; bool alu_busy[RANDOMX_LPROG_LATENCY + 1][ALU_COUNT]; bool is_rotation[LightInstructionType::COUNT]; bool rotated[8]; int rotate_count = 0; memset(latency, 0, sizeof(latency)); memset(asic_latency, 0, sizeof(asic_latency)); memset(alu_busy, 0, sizeof(alu_busy)); memset(is_rotation, 0, sizeof(is_rotation)); memset(rotated, 0, sizeof(rotated)); is_rotation[LightInstructionType::IROR_R] = true; int num_retries = 0; code_size = 0; int total_iterations = 0; // Generate random code to achieve minimal required latency for our abstract CPU // Try to get this latency for all 4 registers while (((latency[0] < RANDOMX_LPROG_LATENCY) || (latency[1] < RANDOMX_LPROG_LATENCY) || (latency[2] < RANDOMX_LPROG_LATENCY) || (latency[3] < RANDOMX_LPROG_LATENCY) || (latency[4] < RANDOMX_LPROG_LATENCY) || (latency[5] < RANDOMX_LPROG_LATENCY) || (latency[6] < RANDOMX_LPROG_LATENCY) || (latency[7] < RANDOMX_LPROG_LATENCY)) && (num_retries < 64)) { // Fail-safe to guarantee loop termination ++total_iterations; if (total_iterations > 1024) { std::cout << "total_iterations = " << total_iterations << std::endl; break; } check_data(data_index, 1, data, sizeof(data)); const uint8_t b1 = data[data_index++]; int instrType = lightInstruction[b1 & ((1 << LIGHT_OPCODE_BITS) - 1)]; check_data(data_index, 1, data, sizeof(data)); const uint8_t b2 = data[data_index++]; dst_index = b2 & ((1 << V4_DST_INDEX_BITS) - 1); src_index = (b2 >> (V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1); const int a = dst_index; int b = src_index; // Don't do rotation with the same destination twice because it's equal to a single rotation if (is_rotation[instrType] && rotated[a]) { continue; } // Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized: // 2x IADD_RC(a, b, C) = IADD_RC(a, b*2, C1+C2) // 2x ISUB_R(a, b) = ISUB_R(a, 2*b) // 2x IMUL_R(a, b) = IMUL_R(a, b*b) // 2x IMUL_9C(a, C) = 9 * (9 * a + C1) + C2 = 81 * a + (9 * C1 + C2) // 2x IMUL_RCP(a, C) = a * (C * C) // 2x IXOR_R = NOP // 2x IROR_R(a, b) = IROR_R(a, 2*b) if (instrType != LightInstructionType::IMULH_R && instrType != LightInstructionType::ISMULH_R && ((inst_data[a] & 0xFFFF00) == (instrType << 8) + ((inst_data[b] & 255) << 16))) { continue; } if ((instrType == LightInstructionType::IADD_RC) || (instrType == LightInstructionType::IMUL_9C) || (instrType == LightInstructionType::IMUL_RCP) || (instrType == LightInstructionType::COND_R) || ((instrType != LightInstructionType::IMULH_R) && (instrType != LightInstructionType::ISMULH_R) && (a == b))) { check_data(data_index, 4, data, sizeof(data)); imm32 = load32(&data[data_index++]); } // Find which ALU is available (and when) for this instruction int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b]; int alu_index = -1; while (next_latency < RANDOMX_LPROG_LATENCY) { for (int i = op_ALUs[instrType] - 1; i >= 0; --i) { if (!alu_busy[next_latency][i]) { // ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check if ((instrType == LightInstructionType::IADD_RC || instrType == LightInstructionType::IMUL_9C || instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R) && alu_busy[next_latency + 1][i]) { continue; } // Rotation can only start when previous rotation is finished, so do an additional availability check if (is_rotation[instrType] && (next_latency < rotate_count * op_latency[instrType])) { continue; } alu_index = i; break; } } if (alu_index >= 0) { break; } ++next_latency; } // Don't generate instructions that leave some register unchanged for more than 15 cycles if (next_latency > latency[a] + 15) { continue; } next_latency += op_latency[instrType]; if (next_latency <= RANDOMX_LPROG_LATENCY) { if (is_rotation[instrType]) { ++rotate_count; } // Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined alu_busy[next_latency - op_latency[instrType]][alu_index] = true; latency[a] = next_latency; // ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[instrType]; rotated[a] = is_rotation[instrType]; inst_data[a] = code_size + (instrType << 8) + ((inst_data[b] & 255) << 16); prog(code_size).opcode = lightInstructionOpcode[instrType]; prog(code_size).dst = dst_index; prog(code_size).src = src_index; prog(code_size).setImm32(imm32); if (instrType == LightInstructionType::IADD_RC || instrType == LightInstructionType::IMUL_9C || instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R) { // ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too alu_busy[next_latency - op_latency[instrType] + 1][alu_index] = true; } ++code_size; if (code_size >= RANDOMX_LPROG_MIN_SIZE) { break; } } else { ++num_retries; std::cout << "Retry " << num_retries << " with code_size = " << code_size << ", next_latency = " << next_latency << std::endl; } } // ASIC has more execution resources and can extract as much parallelism from the code as possible // We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC // Get this latency for at least 1 of the 4 registers const int prev_code_size = code_size; if ((code_size < RANDOMX_LPROG_MAX_SIZE) && (asic_latency[indexRegister] < RANDOMX_LPROG_ASIC_LATENCY)) { int min_idx = indexRegister; int max_idx = 0; for (int i = 1; i < 8; ++i) { //if (asic_latency[i] < asic_latency[min_idx]) min_idx = i; if (asic_latency[i] > asic_latency[max_idx]) max_idx = i; } const int pattern[3] = { LightInstructionType::IMUL_R, LightInstructionType::IROR_R, LightInstructionType::IMUL_R }; const int instrType = pattern[(code_size - prev_code_size) % 3]; latency[min_idx] = latency[max_idx] + op_latency[instrType]; asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[instrType]; prog(code_size).opcode = lightInstructionOpcode[instrType]; prog(code_size).dst = min_idx; prog(code_size).src = max_idx; ++code_size; } for (int i = 0; i < 8; ++i) { std::cout << "Latency " << i << " = " << latency[i] << std::endl; } std::cout << "Code size = " << code_size << std::endl; std::cout << "ALUs:" << std::endl; for (int i = 0; i < RANDOMX_LPROG_LATENCY + 1; ++i) { for (int j = 0; j < ALU_COUNT; ++j) { std::cout << (alu_busy[i][j] ? '*' : '_'); } std::cout << std::endl; } // There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time // It never does more than 4 iterations for all block heights < 10,000,000 } while ((code_size < RANDOMX_LPROG_MIN_SIZE) || (code_size > RANDOMX_LPROG_MAX_SIZE)); prog.setSize(code_size); } }