/* Copyright (c) 2018 tevador This file is part of RandomX. RandomX is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. RandomX is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with RandomX. If not, see. */ #include "Instruction.hpp" #include "common.hpp" namespace RandomX { void Instruction::print(std::ostream& os) const { os << names[opcode] << " "; auto handler = engine[opcode]; (this->*handler)(os); } void Instruction::genAddressReg(std::ostream& os) const { os << ((alt % 4) ? "L1" : "L2") << "[r" << (int)src << "]"; } void Instruction::genAddressRegDst(std::ostream& os) const { os << ((alt % 4) ? "L1" : "L2") << "[r" << (int)dst << "]"; } void Instruction::genAddressImm(std::ostream& os) const { os << ((alt % 4) ? "L1" : "L2") << "[" << (imm32 & ((alt % 4) ? ScratchpadL1Mask : ScratchpadL2Mask)) << "]"; } void Instruction::h_IADD_R(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", r" << (int)src << std::endl; } else { os << "r" << (int)dst << ", " << imm32 << std::endl; } } void Instruction::h_IADD_M(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", "; genAddressReg(os); os << std::endl; } else { os << "r" << (int)dst << ", "; genAddressImm(os); os << std::endl; } } void Instruction::h_IADD_RC(std::ostream& os) const { os << "r" << (int)dst << ", r" << (int)src << ", " << imm32 << std::endl; } //1 uOP void Instruction::h_ISUB_R(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", r" << (int)src << std::endl; } else { os << "r" << (int)dst << ", " << imm32 << std::endl; } } void Instruction::h_ISUB_M(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", "; genAddressReg(os); os << std::endl; } else { os << "r" << (int)dst << ", "; genAddressImm(os); os << std::endl; } } void Instruction::h_IMUL_9C(std::ostream& os) const { os << "r" << (int)dst << ", " << imm32 << std::endl; } void Instruction::h_IMUL_R(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", r" << (int)src << std::endl; } else { os << "r" << (int)dst << ", " << imm32 << std::endl; } } void Instruction::h_IMUL_M(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", "; genAddressReg(os); os << std::endl; } else { os << "r" << (int)dst << ", "; genAddressImm(os); os << std::endl; } } void Instruction::h_IMULH_R(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", r" << (int)src << std::endl; } else { os << "r" << (int)dst << ", " << imm32 << std::endl; } } void Instruction::h_IMULH_M(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", "; genAddressReg(os); os << std::endl; } else { os << "r" << (int)dst << ", "; genAddressImm(os); os << std::endl; } } void Instruction::h_ISMULH_R(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", r" << (int)src << std::endl; } else { os << "r" << (int)dst << ", " << imm32 << std::endl; } } void Instruction::h_ISMULH_M(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", "; genAddressReg(os); os << std::endl; } else { os << "r" << (int)dst << ", "; genAddressImm(os); os << std::endl; } } void Instruction::h_INEG_R(std::ostream& os) const { os << "r" << (int)dst << std::endl; } void Instruction::h_IXOR_R(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", r" << (int)src << std::endl; } else { os << "r" << (int)dst << ", " << imm32 << std::endl; } } void Instruction::h_IXOR_M(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", "; genAddressReg(os); os << std::endl; } else { os << "r" << (int)dst << ", "; genAddressImm(os); os << std::endl; } } void Instruction::h_IROR_R(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", r" << (int)src << std::endl; } else { os << "r" << (int)dst << ", " << (imm32 & 63) << std::endl; } } void Instruction::h_IROL_R(std::ostream& os) const { if (src != dst) { os << "r" << (int)dst << ", r" << (int)src << std::endl; } else { os << "r" << (int)dst << ", " << (imm32 & 63) << std::endl; } } void Instruction::h_IDIV_C(std::ostream& os) const { os << "r" << (int)dst << ", " << (uint32_t)imm32 << std::endl; } void Instruction::h_ISDIV_C(std::ostream& os) const { os << "r" << (int)dst << ", " << imm32 << std::endl; } void Instruction::h_FPSWAP_R(std::ostream& os) const { const char reg = (dst >= 4) ? 'e' : 'f'; auto dstIndex = dst % 4; os << reg << dstIndex << std::endl; } void Instruction::h_FPADD_R(std::ostream& os) const { auto dstIndex = dst % 4; auto srcIndex = src % 4; os << "f" << dstIndex << ", a" << srcIndex << std::endl; } void Instruction::h_FPADD_M(std::ostream& os) const { auto dstIndex = dst % 4; os << "f" << dstIndex << ", "; genAddressReg(os); os << std::endl; } void Instruction::h_FPSUB_R(std::ostream& os) const { auto dstIndex = dst % 4; auto srcIndex = src % 4; os << "f" << dstIndex << ", a" << srcIndex << std::endl; } void Instruction::h_FPSUB_M(std::ostream& os) const { auto dstIndex = dst % 4; os << "f" << dstIndex << ", "; genAddressReg(os); os << std::endl; } void Instruction::h_FPNEG_R(std::ostream& os) const { auto dstIndex = dst % 4; os << "f" << dstIndex << std::endl; } void Instruction::h_FPMUL_R(std::ostream& os) const { auto dstIndex = dst % 4; auto srcIndex = src % 4; os << "e" << dstIndex << ", a" << srcIndex << std::endl; } void Instruction::h_FPMUL_M(std::ostream& os) const { auto dstIndex = dst % 4; os << "e" << dstIndex << ", "; genAddressReg(os); os << std::endl; } void Instruction::h_FPDIV_R(std::ostream& os) const { auto dstIndex = dst % 4; auto srcIndex = src % 4; os << "e" << dstIndex << ", a" << srcIndex << std::endl; } void Instruction::h_FPDIV_M(std::ostream& os) const { auto dstIndex = dst % 4; os << "e" << dstIndex << ", "; genAddressReg(os); os << std::endl; } void Instruction::h_FPSQRT_R(std::ostream& os) const { auto dstIndex = dst % 4; os << "e" << dstIndex << std::endl; } void Instruction::h_CFROUND(std::ostream& os) const { os << "r" << (int)src << ", " << (alt & 63) << std::endl; } static inline const char* condition(int index) { switch (index) { case 0: return "be"; case 1: return "ab"; case 2: return "sg"; case 3: return "ns"; case 4: return "of"; case 5: return "no"; case 6: return "lt"; case 7: return "ge"; } } void Instruction::h_COND_R(std::ostream& os) const { os << "r" << (int)dst << ", " << condition((alt >> 2) & 7) << "(r" << (int)src << ", " << imm32 << ")" << std::endl; } void Instruction::h_COND_M(std::ostream& os) const { os << "r" << (int)dst << ", " << condition((alt >> 2) & 7) << "("; genAddressReg(os); os << ", " << imm32 << ")" << std::endl; } void Instruction::h_ISTORE(std::ostream& os) const { genAddressRegDst(os); os << ", r" << (int)src << std::endl; } void Instruction::h_FSTORE(std::ostream& os) const { const char reg = (src >= 4) ? 'e' : 'f'; genAddressRegDst(os); auto srcIndex = src % 4; os << ", " << reg << srcIndex << std::endl; } void Instruction::h_NOP(std::ostream& os) const { os << std::endl; } #include "instructionWeights.hpp" #define INST_NAME(x) REPN(#x, WT(x)) #define INST_HANDLE(x) REPN(&Instruction::h_##x, WT(x)) const char* Instruction::names[256] = { //Integer INST_NAME(IADD_R) INST_NAME(IADD_M) INST_NAME(IADD_RC) INST_NAME(ISUB_R) INST_NAME(ISUB_M) INST_NAME(IMUL_9C) INST_NAME(IMUL_R) INST_NAME(IMUL_M) INST_NAME(IMULH_R) INST_NAME(IMULH_M) INST_NAME(ISMULH_R) INST_NAME(ISMULH_M) INST_NAME(IDIV_C) INST_NAME(ISDIV_C) INST_NAME(INEG_R) INST_NAME(IXOR_R) INST_NAME(IXOR_M) INST_NAME(IROR_R) INST_NAME(IROL_R) //Common floating point INST_NAME(FPSWAP_R) //Floating point group F INST_NAME(FPADD_R) INST_NAME(FPADD_M) INST_NAME(FPSUB_R) INST_NAME(FPSUB_M) INST_NAME(FPNEG_R) //Floating point group E INST_NAME(FPMUL_R) INST_NAME(FPMUL_M) INST_NAME(FPDIV_R) INST_NAME(FPDIV_M) INST_NAME(FPSQRT_R) //Control INST_NAME(COND_R) INST_NAME(COND_M) INST_NAME(CFROUND) INST_NAME(ISTORE) INST_NAME(FSTORE) INST_NAME(NOP) }; InstructionVisualizer Instruction::engine[256] = { //Integer INST_HANDLE(IADD_R) INST_HANDLE(IADD_M) INST_HANDLE(IADD_RC) INST_HANDLE(ISUB_R) INST_HANDLE(ISUB_M) INST_HANDLE(IMUL_9C) INST_HANDLE(IMUL_R) INST_HANDLE(IMUL_M) INST_HANDLE(IMULH_R) INST_HANDLE(IMULH_M) INST_HANDLE(ISMULH_R) INST_HANDLE(ISMULH_M) INST_HANDLE(IDIV_C) INST_HANDLE(ISDIV_C) INST_HANDLE(INEG_R) INST_HANDLE(IXOR_R) INST_HANDLE(IXOR_M) INST_HANDLE(IROR_R) INST_HANDLE(IROL_R) //Common floating point INST_HANDLE(FPSWAP_R) //Floating point group F INST_HANDLE(FPADD_R) INST_HANDLE(FPADD_M) INST_HANDLE(FPSUB_R) INST_HANDLE(FPSUB_M) INST_HANDLE(FPNEG_R) //Floating point group E INST_HANDLE(FPMUL_R) INST_HANDLE(FPMUL_M) INST_HANDLE(FPDIV_R) INST_HANDLE(FPDIV_M) INST_HANDLE(FPSQRT_R) //Control INST_HANDLE(COND_R) INST_HANDLE(COND_M) INST_HANDLE(CFROUND) INST_HANDLE(ISTORE) INST_HANDLE(FSTORE) INST_HANDLE(NOP) }; }