/*
Copyright (c) 2018 tevador
This file is part of RandomX.
RandomX is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RandomX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RandomX. If not, see.
*/
#pragma once
#include
#include
#include
#include "common.hpp"
namespace randomx {
class Program;
class ProgramConfiguration;
class SuperscalarProgram;
class JitCompilerX86;
class Instruction;
typedef void(JitCompilerX86::*InstructionGeneratorX86)(Instruction&, int);
constexpr uint32_t CodeSize = 64 * 1024;
class JitCompilerX86 {
public:
JitCompilerX86();
~JitCompilerX86();
void generateProgram(Program&, ProgramConfiguration&);
void generateProgramLight(Program&, ProgramConfiguration&);
template
void generateSuperscalarHash(SuperscalarProgram (&programs)[N], std::vector &);
void generateDatasetInitCode();
ProgramFunc getProgramFunc() {
return (ProgramFunc)code;
}
DatasetInitFunc getDatasetInitFunc() {
return (DatasetInitFunc)code;
}
uint8_t* getCode() {
return code;
}
size_t getCodeSize();
private:
static InstructionGeneratorX86 engine[256];
std::vector instructionOffsets;
int registerUsage[8];
uint8_t* code;
int32_t codePos;
void generateProgramPrologue(Program&, ProgramConfiguration&);
void generateProgramEpilogue(Program&);
int getConditionRegister();
void genAddressReg(Instruction&, bool);
void genAddressRegDst(Instruction&, bool);
void genAddressImm(Instruction&);
void genSIB(int scale, int index, int base);
void handleCondition(Instruction&, int);
void generateCode(Instruction&, int);
void generateSuperscalarCode(Instruction &, std::vector &);
void emitByte(uint8_t val) {
code[codePos] = val;
codePos++;
}
void emit32(uint32_t val) {
code[codePos + 0] = val;
code[codePos + 1] = val >> 8;
code[codePos + 2] = val >> 16;
code[codePos + 3] = val >> 24;
codePos += 4;
}
void emit64(uint64_t val) {
code[codePos + 0] = val;
code[codePos + 1] = val >> 8;
code[codePos + 2] = val >> 16;
code[codePos + 3] = val >> 24;
code[codePos + 4] = val >> 32;
code[codePos + 5] = val >> 40;
code[codePos + 6] = val >> 48;
code[codePos + 7] = val >> 56;
codePos += 8;
}
template
void emit(const uint8_t (&src)[N]) {
emit(src, N);
}
void emit(const uint8_t* src, size_t count) {
memcpy(code + codePos, src, count);
codePos += count;
}
void h_IADD_RS(Instruction&, int);
void h_IADD_M(Instruction&, int);
void h_IADD_RC(Instruction&, int);
void h_ISUB_R(Instruction&, int);
void h_ISUB_M(Instruction&, int);
void h_IMUL_9C(Instruction&, int);
void h_IMUL_R(Instruction&, int);
void h_IMUL_M(Instruction&, int);
void h_IMULH_R(Instruction&, int);
void h_IMULH_M(Instruction&, int);
void h_ISMULH_R(Instruction&, int);
void h_ISMULH_M(Instruction&, int);
void h_IMUL_RCP(Instruction&, int);
void h_ISDIV_C(Instruction&, int);
void h_INEG_R(Instruction&, int);
void h_IXOR_R(Instruction&, int);
void h_IXOR_M(Instruction&, int);
void h_IROR_R(Instruction&, int);
void h_IROL_R(Instruction&, int);
void h_ISWAP_R(Instruction&, int);
void h_FSWAP_R(Instruction&, int);
void h_FADD_R(Instruction&, int);
void h_FADD_M(Instruction&, int);
void h_FSUB_R(Instruction&, int);
void h_FSUB_M(Instruction&, int);
void h_FSCAL_R(Instruction&, int);
void h_FMUL_R(Instruction&, int);
void h_FMUL_M(Instruction&, int);
void h_FDIV_R(Instruction&, int);
void h_FDIV_M(Instruction&, int);
void h_FSQRT_R(Instruction&, int);
void h_COND_R(Instruction&, int);
void h_COND_M(Instruction&, int);
void h_CFROUND(Instruction&, int);
void h_ISTORE(Instruction&, int);
void h_FSTORE(Instruction&, int);
void h_NOP(Instruction&, int);
};
}