/* Copyright (c) 2018 tevador This file is part of RandomX. RandomX is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. RandomX is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with RandomX. If not, see. */ //#define TRACE #include "InterpretedVirtualMachine.hpp" #include "CompiledVirtualMachine.hpp" #include "AssemblyGeneratorX86.hpp" #include "Stopwatch.hpp" #include "blake2/blake2.h" #include #include #include #include #include #include "Program.hpp" #include #include "instructions.hpp" #include #include #include "dataset.hpp" #include "Cache.hpp" const uint8_t seed[32] = { 191, 182, 222, 175, 249, 89, 134, 104, 241, 68, 191, 62, 162, 166, 61, 64, 123, 191, 227, 193, 118, 60, 188, 53, 223, 133, 175, 24, 123, 230, 55, 74 }; void dump(const char* buffer, uint64_t count, const char* name) { std::ofstream fout(name, std::ios::out | std::ios::binary); fout.write(buffer, count); fout.close(); } constexpr char hexmap[] = "0123456789abcdef"; void outputHex(std::ostream& os, const char* data, int length) { for (int i = 0; i < length; ++i) { os << hexmap[(data[i] & 0xF0) >> 4]; os << hexmap[data[i] & 0x0F]; } } void readOption(const char* option, int argc, char** argv, bool& out) { for (int i = 0; i < argc; ++i) { if (strcmp(argv[i], option) == 0) { out = true; return; } } out = false; } void readIntOption(const char* option, int argc, char** argv, int& out, int defaultValue) { for (int i = 0; i < argc - 1; ++i) { if (strcmp(argv[i], option) == 0 && (out = atoi(argv[i + 1])) > 0) { return; } } out = defaultValue; } void readInt(int argc, char** argv, int& out, int defaultValue) { for (int i = 0; i < argc; ++i) { if (*argv[i] != '-' && (out = atoi(argv[i])) > 0) { return; } } out = defaultValue; } std::ostream& operator<<(std::ostream& os, const RandomX::RegisterFile& rf) { for (int i = 0; i < RandomX::RegistersCount; ++i) os << std::hex << "r" << i << " = " << rf.r[i].u64 << std::endl << std::dec; for (int i = 0; i < RandomX::RegistersCount; ++i) os << std::hex << "f" << i << " = " << rf.f[i].u64 << " (" << rf.f[i].f64 << ")" << std::endl << std::dec; return os; } class AtomicHash { public: AtomicHash() { for (int i = 0; i < 4; ++i) hash[i].store(0); } void xorWith(uint64_t update[4]) { for (int i = 0; i < 4; ++i) hash[i].fetch_xor(update[i]); } void print(std::ostream& os) { for (int i = 0; i < 4; ++i) print(hash[i], os); os << std::endl; } private: void print(std::atomic& hash, std::ostream& os) { auto h = hash.load(); outputHex(std::cout, (char*)&h, sizeof(h)); } std::atomic hash[4]; }; void generateAsm(int nonce) { uint64_t hash[4]; unsigned char blockTemplate[] = { 0x07, 0x07, 0xf7, 0xa4, 0xf0, 0xd6, 0x05, 0xb3, 0x03, 0x26, 0x08, 0x16, 0xba, 0x3f, 0x10, 0x90, 0x2e, 0x1a, 0x14, 0x5a, 0xc5, 0xfa, 0xd3, 0xaa, 0x3a, 0xf6, 0xea, 0x44, 0xc1, 0x18, 0x69, 0xdc, 0x4f, 0x85, 0x3f, 0x00, 0x2b, 0x2e, 0xea, 0x00, 0x00, 0x00, 0x00, 0x77, 0xb2, 0x06, 0xa0, 0x2c, 0xa5, 0xb1, 0xd4, 0xce, 0x6b, 0xbf, 0xdf, 0x0a, 0xca, 0xc3, 0x8b, 0xde, 0xd3, 0x4d, 0x2d, 0xcd, 0xee, 0xf9, 0x5c, 0xd2, 0x0c, 0xef, 0xc1, 0x2f, 0x61, 0xd5, 0x61, 0x09 }; int* noncePtr = (int*)(blockTemplate + 39); *noncePtr = nonce; blake2b(hash, sizeof(hash), blockTemplate, sizeof(blockTemplate), nullptr, 0); RandomX::AssemblyGeneratorX86 asmX86; asmX86.generateProgram(hash); asmX86.printCode(std::cout); } void mine(RandomX::VirtualMachine* vm, std::atomic& atomicNonce, AtomicHash& result, int noncesCount, int thread) { uint64_t hash[4]; unsigned char blockTemplate[] = { 0x07, 0x07, 0xf7, 0xa4, 0xf0, 0xd6, 0x05, 0xb3, 0x03, 0x26, 0x08, 0x16, 0xba, 0x3f, 0x10, 0x90, 0x2e, 0x1a, 0x14, 0x5a, 0xc5, 0xfa, 0xd3, 0xaa, 0x3a, 0xf6, 0xea, 0x44, 0xc1, 0x18, 0x69, 0xdc, 0x4f, 0x85, 0x3f, 0x00, 0x2b, 0x2e, 0xea, 0x00, 0x00, 0x00, 0x00, 0x77, 0xb2, 0x06, 0xa0, 0x2c, 0xa5, 0xb1, 0xd4, 0xce, 0x6b, 0xbf, 0xdf, 0x0a, 0xca, 0xc3, 0x8b, 0xde, 0xd3, 0x4d, 0x2d, 0xcd, 0xee, 0xf9, 0x5c, 0xd2, 0x0c, 0xef, 0xc1, 0x2f, 0x61, 0xd5, 0x61, 0x09 }; int* noncePtr = (int*)(blockTemplate + 39); int nonce = atomicNonce.fetch_add(1); while (nonce < noncesCount) { //std::cout << "Thread " << thread << " nonce " << nonce << std::endl; *noncePtr = nonce; blake2b(hash, sizeof(hash), blockTemplate, sizeof(blockTemplate), nullptr, 0); int spIndex = ((uint8_t*)hash)[24] | ((((uint8_t*)hash)[25] & 63) << 8); vm->initializeScratchpad(spIndex); vm->initializeProgram(hash); //dump((char*)((RandomX::CompiledVirtualMachine*)vm)->getProgram(), RandomX::CodeSize, "code-1337-jmp.txt"); vm->execute(); vm->getResult(hash); result.xorWith(hash); if (RandomX::trace) { std::cout << "Nonce: " << nonce << " "; outputHex(std::cout, (char*)hash, sizeof(hash)); std::cout << std::endl; } nonce = atomicNonce.fetch_add(1); } } int main(int argc, char** argv) { bool softAes, lightClient, genAsm, compiled; int programCount, threadCount; readOption("--softAes", argc, argv, softAes); readOption("--lightClient", argc, argv, lightClient); readOption("--genAsm", argc, argv, genAsm); readOption("--compiled", argc, argv, compiled); readIntOption("--threads", argc, argv, threadCount, 1); readIntOption("--nonces", argc, argv, programCount, 1000); if (genAsm) { generateAsm(programCount); return 0; } std::atomic atomicNonce(0); AtomicHash result; std::vector vms; std::vector threads; RandomX::dataset_t dataset; if (softAes) std::cout << "Using software AES." << std::endl; std::cout << "Initializing..." << std::endl; try { Stopwatch sw(true); if (softAes) { RandomX::datasetInitCache(seed, dataset); } else { RandomX::datasetInitCache(seed, dataset); } if (RandomX::trace) { std::cout << "Keys: " << std::endl; for (int i = 0; i < dataset.cache->getKeys().size(); ++i) { outputHex(std::cout, (char*)&dataset.cache->getKeys()[i], sizeof(__m128i)); } std::cout << std::endl; std::cout << "Cache: " << std::endl; outputHex(std::cout, (char*)dataset.cache->getCache(), sizeof(__m128i)); std::cout << std::endl; } if (lightClient) { std::cout << "Cache (64 MiB) initialized in " << sw.getElapsed() << " s" << std::endl; } else { RandomX::Cache* cache = dataset.cache; RandomX::datasetAlloc(dataset); if (threadCount > 1) { auto perThread = RandomX::DatasetBlockCount / threadCount; auto remainder = RandomX::DatasetBlockCount % threadCount; for (int i = 0; i < threadCount; ++i) { auto count = perThread + (i == threadCount - 1 ? remainder : 0); if (softAes) { threads.push_back(std::thread(&RandomX::datasetInit, cache, dataset, i * perThread, count)); } else { threads.push_back(std::thread(&RandomX::datasetInit, cache, dataset, i * perThread, count)); } } for (int i = 0; i < threads.size(); ++i) { threads[i].join(); } } else { if (softAes) { RandomX::datasetInit(cache, dataset, 0, RandomX::DatasetBlockCount); } else { RandomX::datasetInit(cache, dataset, 0, RandomX::DatasetBlockCount); } } delete cache; threads.clear(); std::cout << "Dataset (4 GiB) initialized in " << sw.getElapsed() << " s" << std::endl; } std::cout << "Initializing " << threadCount << " virtual machine(s)..." << std::endl; for (int i = 0; i < threadCount; ++i) { RandomX::VirtualMachine* vm; if (compiled) { vm = new RandomX::CompiledVirtualMachine(softAes); } else { vm = new RandomX::InterpretedVirtualMachine(softAes); } vm->setDataset(dataset, lightClient); vms.push_back(vm); } std::cout << "Running benchmark (" << programCount << " programs) ..." << std::endl; sw.restart(); if (threadCount > 1) { for (int i = 0; i < vms.size(); ++i) { threads.push_back(std::thread(&mine, vms[i], std::ref(atomicNonce), std::ref(result), programCount, i)); } for (int i = 0; i < threads.size(); ++i) { threads[i].join(); } } else { mine(vms[0], std::ref(atomicNonce), std::ref(result), programCount, 0); } double elapsed = sw.getElapsed(); std::cout << "Calculated result: "; result.print(std::cout); if(programCount == 1000) std::cout << "Reference result: f6bf06465d5fa1b1dc919140b9e9f9e210b07ae6d662988458a172e9a267eb3f" << std::endl; std::cout << "Performance: " << programCount / elapsed << " programs per second" << std::endl; /*if (threadCount == 1 && !compiled) { auto ivm = (RandomX::InterpretedVirtualMachine*)vms[0]; std::cout << ivm->getProgam(); }*/ } catch (std::exception& e) { std::cout << "ERROR: " << e.what() << std::endl; return 1; } return 0; }